The formula [tex]$f(x+1)=\frac{2}{3}(f(x))$[/tex] defines a geometric sequence where [tex]$f(1)=18$[/tex]. Which explicit formula can model the same sequence?

A. [tex]$f(x)=(18)\left(\frac{2}{3}\right)(x-1)$[/tex]

B. [tex]$f(x)=18(x-1)^{\frac{2}{3}}$[/tex]

C. [tex]$f(x)=18\left(\frac{2}{3}\right)^{x-1}$[/tex]

D. [tex]$f(x)=\frac{2}{3}(18)^{x-1}$[/tex]



Answer :

Let's break down the given information step-by-step to derive the explicit formula for [tex]\( f(x) \)[/tex].

1. Understanding the Recursive Formula:
The recursive formula given is:
[tex]\[ f(x+1) = \frac{2}{3} \cdot f(x) \][/tex]
This indicates that each term in the sequence is obtained by multiplying the previous term by [tex]\(\frac{2}{3}\)[/tex].

2. Identifying the Sequence Type:
The recursive relationship [tex]\( f(x+1) = \frac{2}{3} \cdot f(x) \)[/tex] shows that this is a geometric sequence. In a geometric sequence, each term is a constant multiple (common ratio [tex]\( r \)[/tex]) of the previous term.

3. General Form of a Geometric Sequence:
The general explicit form of a geometric sequence can be written as:
[tex]\[ f(x) = f(1) \cdot r^{x-1} \][/tex]
where [tex]\( f(1) \)[/tex] is the first term and [tex]\( r \)[/tex] is the common ratio.

4. Identifying [tex]\( f(1) \)[/tex] and [tex]\( r \)[/tex]:
From the problem, we have:
[tex]\[ f(1) = 18 \][/tex]
The common ratio [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{2}{3} \][/tex]

5. Substitute [tex]\( f(1) \)[/tex] and [tex]\( r \)[/tex] into the General Form:
Plugging [tex]\( f(1) = 18 \)[/tex] and [tex]\( r = \frac{2}{3} \)[/tex] into the explicit formula for a geometric sequence, we get:
[tex]\[ f(x) = 18 \cdot \left( \frac{2}{3} \right)^{x-1} \][/tex]

Thus, the explicit formula that models the given sequence is:
[tex]\[ f(x) = 18 \left( \frac{2}{3} \right)^{x-1} \][/tex]

Therefore, the correct option is:
[tex]\[ f(x) = 18 \left( \frac{2}{3} \right)^{x-1} \][/tex]