What are the solutions to the quadratic equation [tex]$x^2 - 16 = 0$[/tex]?

A. [tex]$x = 2$[/tex] and [tex][tex]$x = -2$[/tex][/tex]
B. [tex]$x = 4$[/tex] and [tex]$x = -4$[/tex]
C. [tex][tex]$x = 8$[/tex][/tex] and [tex]$x = -8$[/tex]
D. [tex]$x = 16$[/tex] and [tex][tex]$x = -16$[/tex][/tex]



Answer :

To solve the quadratic equation [tex]\(x^2 - 16 = 0\)[/tex], we need to find the values of [tex]\(x\)[/tex] that satisfy this equation. Let's work through the problem step by step.

1. Start with the given quadratic equation:
[tex]\[ x^2 - 16 = 0 \][/tex]

2. Rearrange the equation to isolate [tex]\(x^2\)[/tex]:
[tex]\[ x^2 = 16 \][/tex]

3. Solve for [tex]\(x\)[/tex] by taking the square root of both sides:
[tex]\[ x = \pm \sqrt{16} \][/tex]

4. Simplify the square root:
[tex]\[ \sqrt{16} = 4 \][/tex]

5. Then, we have two solutions:
[tex]\[ x = 4 \quad \text{and} \quad x = -4 \][/tex]

So, the solutions to the quadratic equation [tex]\(x^2 - 16 = 0\)[/tex] are:
[tex]\[ x = 4 \][/tex] and [tex]\[ x = -4 \][/tex]

Therefore, the correct answer is:
[tex]\[ x = 4 \quad \text{and} \quad x = -4 \][/tex]

Other Questions