Complete with a number to satisfy the equality [tex]$\frac{--8}{2}=\frac{17}{3}$[/tex].

A) [tex]$\frac{58}{6}$[/tex]

B) [tex][tex]$\frac{31}{4}$[/tex][/tex]

C) [tex]$\frac{7}{3}$[/tex]

D) [tex]$\frac{16}{2}$[/tex]



Answer :

Given the equality [tex]\( -\frac{8}{2} = \frac{17}{3} \)[/tex], let's convert and compare the fraction and each of the given choices.

First, simplify [tex]\( -\frac{8}{2} \)[/tex]:
[tex]\[ -\frac{8}{2} = -4 \][/tex]

Next, we need to evaluate the right-hand side [tex]\(\frac{17}{3}\)[/tex] and see if any of the provided options are equivalent to [tex]\( \frac{17}{3} \)[/tex]:

1. Option A: [tex]\(\frac{58}{6}\)[/tex]
[tex]\[ \frac{58}{6} \approx 9.666666666666666 \][/tex]

2. Option B: [tex]\(\frac{31}{4}\)[/tex]
[tex]\[ \frac{31}{4} = 7.75 \][/tex]

3. Option C: [tex]\(\frac{7}{3}\)[/tex]
[tex]\[ \frac{7}{3} \approx 2.3333333333333335 \][/tex]

4. Option D: [tex]\(\frac{16}{2}\)[/tex]
[tex]\[ \frac{16}{2} = 8.0 \][/tex]

Comparing each option to [tex]\( \frac{17}{3} \approx 9.666666666666666 \)[/tex]:
- Option A is [tex]\( 9.666666666666666 \)[/tex], which is equivalent to [tex]\( \frac{17}{3} \)[/tex].
- Option B is [tex]\( 7.75 \)[/tex], which is not equivalent.
- Option C is [tex]\( 2.3333333333333335 \)[/tex], which is not equivalent.
- Option D is [tex]\( 8.0 \)[/tex], which is not equivalent.

Thus, the correct number to complete the equality is in Option A, which is [tex]\( \frac{58}{6} \)[/tex].