What is the product?

[tex](3x - 6)\left(2x^2 - 7x + 1\right)[/tex]

A. [tex]-12x^2 + 42x - 6[/tex]

B. [tex]-12x^2 + 21x + 6[/tex]

C. [tex]6x^3 - 33x^2 + 45x - 6[/tex]

D. [tex]6x^3 - 27x^2 - 39x + 6[/tex]



Answer :

Sure, let's find the product of the given polynomials step-by-step:

We are asked to multiply the polynomials:
[tex]\[ (3x - 6) \quad \text{and} \quad (2x^2 - 7x + 1) \][/tex]

To find the product, we will distribute each term from the first polynomial with each term from the second polynomial.

1. Distribute [tex]\(3x\)[/tex] to each term in [tex]\(2x^2 - 7x + 1\)[/tex]:
- [tex]\( 3x \cdot 2x^2 = 6x^3 \)[/tex]
- [tex]\( 3x \cdot (-7x) = -21x^2 \)[/tex]
- [tex]\( 3x \cdot 1 = 3x \)[/tex]

2. Distribute [tex]\(-6\)[/tex] to each term in [tex]\(2x^2 - 7x + 1\)[/tex]:
- [tex]\( -6 \cdot 2x^2 = -12x^2 \)[/tex]
- [tex]\( -6 \cdot (-7x) = 42x \)[/tex]
- [tex]\( -6 \cdot 1 = -6 \)[/tex]

Now, we combine all these terms together:
[tex]\[ 6x^3 + (-21x^2) + 3x + (-12x^2) + 42x + (-6) \][/tex]

We collect like terms (combine the coefficients of the same power of [tex]\(x\)[/tex]):
[tex]\[ 6x^3 + (-21x^2 - 12x^2) + (3x + 42x) + (-6) \][/tex]

Simplify the coefficients:
[tex]\[ 6x^3 - 33x^2 + 45x - 6 \][/tex]

Therefore, the expanded form of the product is:
[tex]\[ 6x^3 - 33x^2 + 45x - 6 \][/tex]

So, the correct answer is:
[tex]\[ 6x^3 - 33x^2 + 45x - 6 \][/tex]