What is the missing polynomial?

[tex]\[ -\left(20-4x-5x^2\right)=20-7x^2 \][/tex]

A. [tex]\( 4x-12x^2 \)[/tex]

B. [tex]\( 4x-2x^2 \)[/tex]

C. [tex]\( 40-4x-12x^2 \)[/tex]

D. [tex]\( 40-4x-2x^2 \)[/tex]



Answer :

To solve for the missing polynomial in the given equation, follow these steps:

### Given Equation:

[tex]\[ -\left(20 - 4x - 5x^2\right) = 20 - 7x^2 \][/tex]

### Step-by-Step Solution:

1. Distribute the negative sign through the parentheses on the left-hand side:

[tex]\[ -(20 - 4x - 5x^2) = -20 + 4x + 5x^2 \][/tex]

Now, we rewrite the equation:

[tex]\[ -20 + 4x + 5x^2 = 20 - 7x^2 \][/tex]

2. Combine all terms on one side of the equation to simplify:

Add [tex]\(20 - 7x^2\)[/tex] to both sides of the equation to set it equal to zero:

[tex]\[ -20 + 20 + 4x + 5x^2 + 7x^2 = 0 \][/tex]

3. Combine like terms:

[tex]\[ 0 + 4x + (5x^2 + 7x^2) = 0 \][/tex]

Simplify:

[tex]\[ 4x + 12x^2 = 0 \][/tex]

4. Factor the polynomial expression:

Factor out the common term, [tex]\(x\)[/tex], from each term:

[tex]\[ 4x - 12x^2 = 0 \][/tex]

### Match with Given Choices:

Given the solution's format matches one of the provided choices:

1. [tex]\(4x - 12x^2\)[/tex]
2. [tex]\(4x - 2x^2\)[/tex]
3. [tex]\(40 - 4x - 12x^2\)[/tex]
4. [tex]\(40 - 4x - 2x^2\)[/tex]

The answer is:

[tex]\[ \boxed{4x - 12x^2} \][/tex]

So, the correct missing polynomial expression is:

[tex]\[ 4x - 12x^2 \][/tex]