Find a formula for the line intersecting the graph of [tex]$f(x)$[/tex] at [tex]$x=1$[/tex] and [tex][tex]$x=3$[/tex][/tex], where
[tex]\[ f(x) = \frac{10}{x^2+1} \][/tex]



Answer :

Sure, here is a detailed step-by-step solution for finding a formula for the line intersecting the graph of [tex]\( f(x) = \frac{10}{x^2 + 1} \)[/tex] at [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].

1. Calculate [tex]\( f(1) \)[/tex] and [tex]\( f(3) \)[/tex]:

For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = \frac{10}{1^2 + 1} = \frac{10}{2} = 5 \][/tex]

For [tex]\( x = 3 \)[/tex]:
[tex]\[ f(3) = \frac{10}{3^2 + 1} = \frac{10}{9 + 1} = \frac{10}{10} = 1 \][/tex]

2. Find the coordinates of the points of intersection:

The points of intersection are:
[tex]\[ (1, f(1)) = (1, 5) \][/tex]
[tex]\[ (3, f(3)) = (3, 1) \][/tex]

3. Calculate the slope [tex]\( m \)[/tex] of the line passing through these points:

The slope [tex]\( m \)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the values:
[tex]\[ m = \frac{1 - 5}{3 - 1} = \frac{-4}{2} = -2 \][/tex]

4. Use the point-slope form to find the equation of the line:

The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using the point [tex]\((1, 5)\)[/tex] and the slope [tex]\( m = -2 \)[/tex]:
[tex]\[ y - 5 = -2(x - 1) \][/tex]

5. Simplify the equation to slope-intercept form ( [tex]\( y = mx + b \)[/tex] ):

[tex]\[ y - 5 = -2x + 2 \][/tex]
[tex]\[ y = -2x + 2 + 5 \][/tex]
[tex]\[ y = -2x + 7 \][/tex]

Therefore, the equation of the line intersecting the graph of [tex]\( f(x) \)[/tex] at [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex] is:
[tex]\[ y = -2x + 7 \][/tex]