Answer :

To solve the system of equations:
[tex]\[ \begin{array}{l} y = -x^2 + 4 \\ y = 2x + 1 \end{array} \][/tex]

we need to find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy both equations simultaneously. Here's the step-by-step solution:

1. Set the equations equal to each other since they both equal [tex]\(y\)[/tex]:

[tex]\[ -x^2 + 4 = 2x + 1 \][/tex]

2. Rearrange the equation to set it to zero:

[tex]\[ -x^2 - 2x + 4 - 1 = 0 \][/tex]

[tex]\[ -x^2 - 2x + 3 = 0 \][/tex]

3. Multiply through by -1 to make the coefficient of [tex]\(x^2\)[/tex] positive:

[tex]\[ x^2 + 2x - 3 = 0 \][/tex]

4. Factor the quadratic equation:

[tex]\[ x^2 + 2x - 3 = (x + 3)(x - 1) = 0 \][/tex]

5. Solve for [tex]\(x\)[/tex]:

[tex]\[ x + 3 = 0 \quad \text{or} \quad x - 1 = 0 \][/tex]

[tex]\[ x = -3 \quad \text{or} \quad x = 1 \][/tex]

6. Substitute the values of [tex]\(x\)[/tex] back into either original equation to find the corresponding values of [tex]\(y\)[/tex]. We use [tex]\(y = 2x + 1\)[/tex] for simplicity:

- For [tex]\(x = -3\)[/tex]:

[tex]\[ y = 2(-3) + 1 = -6 + 1 = -5 \][/tex]

- For [tex]\(x = 1\)[/tex]:

[tex]\[ y = 2(1) + 1 = 2 + 1 = 3 \][/tex]

7. Write the solutions as ordered pairs:

The solutions to the system of equations are [tex]\((-3, -5)\)[/tex] and [tex]\((1, 3)\)[/tex].

So, the solutions are:
[tex]\[ \{ (-3, -5), (1, 3) \}. \][/tex]