Solve for [tex]\(x\)[/tex].

[tex]\[3x = 6x - 2\][/tex]



What is the equation of a circle with center [tex]\((2, -3)\)[/tex] and radius 3?

A. [tex]\((x-2)^2 - (y+3)^2 = 9\)[/tex]

B. [tex]\((x-2)^2 + (y+3)^2 = 3\)[/tex]

C. [tex]\((x+2)^2 + (y-3)^2 = 9\)[/tex]

D. [tex]\((x-2)^2 + (y+3)^2 = 9\)[/tex]



Answer :

To find the equation of a circle given its center and radius, we use the standard form of the equation of a circle:

[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]

Where:
- [tex]\((h, k)\)[/tex] is the center of the circle.
- [tex]\(r\)[/tex] is the radius of the circle.

Given in the question:
- The center of the circle [tex]\((h, k)\)[/tex] is [tex]\((2, -3)\)[/tex].
- The radius [tex]\(r\)[/tex] is 3.

Now, we substitute the given center and radius values into the standard form equation:

1. Replace [tex]\(h\)[/tex] with 2:
[tex]\[ (x - 2)^2 \][/tex]

2. Replace [tex]\(k\)[/tex] with -3. Note that subtracting -3 is the same as adding 3:
[tex]\[ (y - (-3))^2 \implies (y + 3)^2 \][/tex]

3. Replace [tex]\(r\)[/tex] with 3 and remember to square it:
[tex]\[ r^2 = 3^2 = 9 \][/tex]

So, substituting these into the standard form, we get the equation of the circle:

[tex]\[ (x - 2)^2 + (y + 3)^2 = 9 \][/tex]

Therefore, the equation of the circle is:
[tex]\[ (x - 2)^2 + (y + 3)^2 = 9 \][/tex]

Examining the choices provided:
- A. [tex]\((x-2)^2-(y+3)^2=9\)[/tex]
- B. [tex]\((x-2)^2+(y+3)^2=3\)[/tex]
- C. [tex]\((x+2)^2+(y-3)^2=9\)[/tex]
- D. [tex]\((x-2)^2+(y+3)^2=9\)[/tex]

The correct choice is D. [tex]\((x-2)^2+(y+3)^2=9\)[/tex].

So, the correct answer to the question is:
[tex]\[ D. (x-2)^2+(y+3)^2=9 \][/tex]