If [tex]\frac{x+3}{3}=\frac{y+2}{2}[/tex], then [tex]\frac{x}{3}[/tex] equals:

A. [tex]y+1[/tex]

B. [tex]\frac{y}{3}[/tex]

C. [tex]y-1[/tex]

D. [tex]\frac{y}{2}[/tex]



Answer :

Given the equation:

[tex]\[ \frac{x + 3}{3} = \frac{y + 2}{2} \][/tex]

we want to find the expression for [tex]\(\frac{x}{3}\)[/tex].

First, we start by cross-multiplying to eliminate the fractions:

[tex]\[ 2 \cdot (x + 3) = 3 \cdot (y + 2) \][/tex]

This simplifies to:

[tex]\[ 2x + 6 = 3y + 6 \][/tex]

Next, we subtract 6 from both sides of the equation:

[tex]\[ 2x = 3y \][/tex]

Now, we solve for [tex]\(x\)[/tex] by dividing both sides by 2:

[tex]\[ x = \frac{3y}{2} \][/tex]

Finally, we need to find [tex]\(\frac{x}{3}\)[/tex]. Substituting [tex]\(x\)[/tex] into the expression gives:

[tex]\[ \frac{x}{3} = \frac{\frac{3y}{2}}{3} \][/tex]

This simplifies by multiplying both the numerator and the denominator:

[tex]\[ \frac{x}{3} = \frac{3y}{2 \cdot 3} = \frac{y}{2} \][/tex]

Thus, the value of [tex]\(\frac{x}{3}\)[/tex] is:

[tex]\[ \frac{x}{3} = \frac{y}{2} \][/tex]

So, the correct answer is:

[tex]\[ \boxed{\frac{y}{2}} \][/tex]