Answer :
Given the equation:
[tex]\[ \frac{x + 3}{3} = \frac{y + 2}{2} \][/tex]
we want to find the expression for [tex]\(\frac{x}{3}\)[/tex].
First, we start by cross-multiplying to eliminate the fractions:
[tex]\[ 2 \cdot (x + 3) = 3 \cdot (y + 2) \][/tex]
This simplifies to:
[tex]\[ 2x + 6 = 3y + 6 \][/tex]
Next, we subtract 6 from both sides of the equation:
[tex]\[ 2x = 3y \][/tex]
Now, we solve for [tex]\(x\)[/tex] by dividing both sides by 2:
[tex]\[ x = \frac{3y}{2} \][/tex]
Finally, we need to find [tex]\(\frac{x}{3}\)[/tex]. Substituting [tex]\(x\)[/tex] into the expression gives:
[tex]\[ \frac{x}{3} = \frac{\frac{3y}{2}}{3} \][/tex]
This simplifies by multiplying both the numerator and the denominator:
[tex]\[ \frac{x}{3} = \frac{3y}{2 \cdot 3} = \frac{y}{2} \][/tex]
Thus, the value of [tex]\(\frac{x}{3}\)[/tex] is:
[tex]\[ \frac{x}{3} = \frac{y}{2} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\frac{y}{2}} \][/tex]
[tex]\[ \frac{x + 3}{3} = \frac{y + 2}{2} \][/tex]
we want to find the expression for [tex]\(\frac{x}{3}\)[/tex].
First, we start by cross-multiplying to eliminate the fractions:
[tex]\[ 2 \cdot (x + 3) = 3 \cdot (y + 2) \][/tex]
This simplifies to:
[tex]\[ 2x + 6 = 3y + 6 \][/tex]
Next, we subtract 6 from both sides of the equation:
[tex]\[ 2x = 3y \][/tex]
Now, we solve for [tex]\(x\)[/tex] by dividing both sides by 2:
[tex]\[ x = \frac{3y}{2} \][/tex]
Finally, we need to find [tex]\(\frac{x}{3}\)[/tex]. Substituting [tex]\(x\)[/tex] into the expression gives:
[tex]\[ \frac{x}{3} = \frac{\frac{3y}{2}}{3} \][/tex]
This simplifies by multiplying both the numerator and the denominator:
[tex]\[ \frac{x}{3} = \frac{3y}{2 \cdot 3} = \frac{y}{2} \][/tex]
Thus, the value of [tex]\(\frac{x}{3}\)[/tex] is:
[tex]\[ \frac{x}{3} = \frac{y}{2} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\frac{y}{2}} \][/tex]