Select the correct answer.

The force acting between two charged particles A and B is [tex]$5.2 \times 10^{-5}$[/tex] newtons. Charges A and B are [tex]$2.4 \times 10^{-2}$[/tex] meters apart. If the charge on particle A is [tex][tex]$7.2 \times 10^{-8}$[/tex][/tex] coulombs, what is the charge of particle B?

( [tex]k = 9.0 \times 10^9[/tex] newton-meters[tex]^2[/tex]/coulomb[tex]^2[/tex] )

A. [tex]2.4 \times 10^{-2}[/tex] coulombs
B. [tex]4.6 \times 10^{-11}[/tex] coulombs
C. [tex]5.2 \times 10^{-11}[/tex] coulombs
D. [tex]7.2 \times 10^{-8}[/tex] coulombs



Answer :

Given the details of the problem, let's solve for the charge on particle B using Coulomb's law, which states:

[tex]\[ F = k \frac{q_A q_B}{r^2} \][/tex]

Where:
- [tex]\( F = 5.2 \times 10^{-5} \)[/tex] newtons
- [tex]\( r = 2.4 \times 10^{-2} \)[/tex] meters
- [tex]\( q_A = 7.2 \times 10^{-8} \)[/tex] coulombs
- [tex]\( k = 90 \times 10^9 \)[/tex] newton-meters²/coulomb²

We need to find [tex]\( q_B \)[/tex]. We rearrange the formula to solve for [tex]\( q_B \)[/tex]:

[tex]\[ q_B = \frac{F \cdot r^2}{k \cdot q_A} \][/tex]

Now, let's plug in the given values:

[tex]\[ q_B = \frac{(5.2 \times 10^{-5}) \cdot (2.4 \times 10^{-2})^2}{(90 \times 10^9) \cdot (7.2 \times 10^{-8})} \][/tex]

Let's start by calculating the numerator:

[tex]\[ (5.2 \times 10^{-5}) \cdot (2.4 \times 10^{-2})^2 \][/tex]
[tex]\[ (2.4 \times 10^{-2})^2 = 5.76 \times 10^{-4} \][/tex]
[tex]\[ 5.2 \times 10^{-5} \cdot 5.76 \times 10^{-4} = 3.002 \times 10^{-8} \][/tex]

Next, let's calculate the denominator:

[tex]\[ (90 \times 10^9) \cdot (7.2 \times 10^{-8}) = 648 \times 10^1 = 6.48 \times 10^3 \][/tex]

Now, we divide the numerator by the denominator:

[tex]\[ q_B = \frac{3.002 \times 10^{-8}}{6.48 \times 10^3} \][/tex]
[tex]\[ q_B \approx 4.63 \times 10^{-12} \][/tex]

Given the options:
A. [tex]\( 2.4 \times 10^{-2} \)[/tex] coulombs
B. [tex]\( 4.6 \times 10^{-11} \)[/tex] coulombs
C. [tex]\( 5.2 \times 10^{-11} \)[/tex] coulombs
D. [tex]\( 7.2 \times 10^{-8} \)[/tex] coulombs

The closest value to [tex]\( 4.63 \times 10^{-12} \)[/tex] coulombs is option B: [tex]\( 4.6 \times 10^{-11} \)[/tex] coulombs.

Therefore, the correct answer is:

B. [tex]\( 4.6 \times 10^{-11} \)[/tex] coulombs