Answer :
Sure! Let's use the distributive property to remove the parentheses and simplify the expression [tex]\((u - 5) \cdot 9\)[/tex].
The distributive property states that [tex]\(a(b + c) = ab + ac\)[/tex]. In this case, the expression has a subtraction inside the parentheses, but the same principle applies:
[tex]\[ (a - b)c = ac - bc \][/tex]
For the given expression [tex]\((u - 5) \cdot 9\)[/tex], we distribute the 9 to both terms inside the parentheses:
1. Multiply [tex]\( u \)[/tex] by 9:
[tex]\[ u \cdot 9 = 9u \][/tex]
2. Multiply [tex]\(-5\)[/tex] by 9:
[tex]\[ -5 \cdot 9 = -45 \][/tex]
Now combine these results:
[tex]\[ 9u - 45 \][/tex]
So, after applying the distributive property, the expression simplifies to:
[tex]\[ 9u - 45 \][/tex]
The distributive property states that [tex]\(a(b + c) = ab + ac\)[/tex]. In this case, the expression has a subtraction inside the parentheses, but the same principle applies:
[tex]\[ (a - b)c = ac - bc \][/tex]
For the given expression [tex]\((u - 5) \cdot 9\)[/tex], we distribute the 9 to both terms inside the parentheses:
1. Multiply [tex]\( u \)[/tex] by 9:
[tex]\[ u \cdot 9 = 9u \][/tex]
2. Multiply [tex]\(-5\)[/tex] by 9:
[tex]\[ -5 \cdot 9 = -45 \][/tex]
Now combine these results:
[tex]\[ 9u - 45 \][/tex]
So, after applying the distributive property, the expression simplifies to:
[tex]\[ 9u - 45 \][/tex]