Sure, let's use the distributive property to remove the parentheses in the expression [tex]\( 11(u+6) \)[/tex].
The distributive property states that for any numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[
a(b + c) = ab + ac
\][/tex]
In our case, [tex]\(a = 11\)[/tex], [tex]\(b = u\)[/tex], and [tex]\(c = 6\)[/tex]. We will distribute the 11 across the terms inside the parentheses:
[tex]\[
11(u + 6) = 11 \cdot u + 11 \cdot 6
\][/tex]
Now we multiply:
[tex]\[
11 \cdot u = 11u
\][/tex]
[tex]\[
11 \cdot 6 = 66
\][/tex]
So, the expression [tex]\(11(u + 6)\)[/tex] simplifies to:
[tex]\[
11u + 66
\][/tex]
Thus, the final result after removing the parentheses using the distributive property is:
[tex]\[
\boxed{11u + 66}
\][/tex]