The [tex]K_{w}[/tex] for water at [tex]0^{\circ}C[/tex] is [tex]0.12 \times 10^{-14}[/tex]. Calculate the pH of a neutral aqueous solution at [tex]0^{\circ}C[/tex].

[tex]pH = \boxed{\ \ }[/tex]



Answer :

To calculate the pH of a neutral aqueous solution at [tex]\(0^{\circ} C\)[/tex] given that the [tex]\(K_w\)[/tex] of water at this temperature is [tex]\(0.12 \times 10^{-14}\)[/tex]:

1. Understand the ion product of water ( [tex]\(K_w\)[/tex] ):
The ion product of water ([tex]\(K_w\)[/tex]) expresses the relationship between the concentrations of hydrogen ions ([tex]\([H^+]\)[/tex]) and hydroxide ions ([tex]\([OH^-]\)[/tex]) in water. For pure water or a neutral solution, the concentrations of hydrogen and hydroxide ions are equal.

2. Express the relationship between [tex]\([H^+]\)[/tex] and [tex]\(K_w\)[/tex]:
Since [tex]\([H^+]\)[/tex] equals [tex]\([OH^-]\)[/tex] in a neutral solution, and their product is [tex]\(K_w\)[/tex],
[tex]\[ [H^+][OH^-] = K_w \][/tex]
For a neutral solution:
[tex]\[ [H^+] = [OH^-] \][/tex]
Thus,
[tex]\[ [H^+]^2 = K_w \][/tex]

3. Calculate the concentration of hydrogen ions, [tex]\([H^+]\)[/tex]:
[tex]\[ [H^+] = \sqrt{K_w} \][/tex]
Given [tex]\(K_w = 0.12 \times 10^{-14}\)[/tex],
[tex]\[ [H^+] = \sqrt{0.12 \times 10^{-14}} \][/tex]
The value of [tex]\([H^+]\)[/tex] is:
[tex]\[ [H^+] \approx 3.4641016151377544 \times 10^{-8} \][/tex]

4. Calculate the pH from the hydrogen ion concentration:
The pH is the negative logarithm (base 10) of the hydrogen ion concentration:
[tex]\[ pH = -\log_{10}([H^+]) \][/tex]
Using the calculated hydrogen ion concentration:
[tex]\[ pH = -\log_{10}(3.4641016151377544 \times 10^{-8}) \][/tex]
The value of the pH is approximately:
[tex]\[ pH \approx 7.4604093769761874 \][/tex]

So, the pH of a neutral aqueous solution at [tex]\(0^{\circ} C\)[/tex] given the [tex]\(K_w\)[/tex] value is:
[tex]\[ pH \approx 7.4604 \][/tex]