The data shown concerns the number of hours spent by ten groups of workers on similar jobs.

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
Size of group $(x)$ & 5 & 8 & 4 & 6 & 10 & 3 & 5 & 9 & 10 & 7 \\
\hline
Number of hours $(y)$ & 10 & 7 & 13 & 4 & 1 & 7 & 8 & 3 & 2 & 5 \\
\hline
\end{tabular}
\][/tex]

(ii) Find the least squares linear regression line for determining the number of hours spent on the job by the number of workers involved (10 marks).



Answer :

To find the least squares linear regression line, we need to determine the linear relationship between the size of the group (independent variable [tex]\( x \)[/tex]) and the number of hours spent on the job (dependent variable [tex]\( y \)[/tex]). The equation of the line can be written as:

[tex]\[ y = b_0 + b_1 x \][/tex]

where [tex]\( b_0 \)[/tex] is the y-intercept and [tex]\( b_1 \)[/tex] is the slope of the line.

We proceed with the following steps:

1. Calculate the mean of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:

[tex]\[ \text{mean\_size} = \frac{1}{n} \sum_{i=1}^{n} x_i \][/tex]
[tex]\[ \text{mean\_hours} = \frac{1}{n} \sum_{i=1}^{n} y_i \][/tex]

Given the data:
[tex]\[ \text{sizes} = [5, 8, 4, 6, 10, 3, 5, 9, 10, 7] \][/tex]
[tex]\[ \text{hours} = [10, 7, 13, 4, 8, 1, 7, 3, 2, 5] \][/tex]

From the result provided, we know:
[tex]\[ \text{mean\_size} = 6.7 \][/tex]
[tex]\[ \text{mean\_hours} = 6.0 \][/tex]

2. Calculate the slope [tex]\( b_1 \)[/tex]:

[tex]\[ b_1 = \frac{\sum{(x_i - \text{mean\_size})(y_i - \text{mean\_hours})}}{\sum{(x_i - \text{mean\_size})^2}} \][/tex]

The numerator for [tex]\( b_1 \)[/tex] is:
[tex]\[ \text{b1\_numerator} = -20.0 \][/tex]

The denominator for [tex]\( b_1 \)[/tex] is:
[tex]\[ \text{b1\_denominator} = 56.1 \][/tex]

Therefore, the slope [tex]\( b_1 \)[/tex] is:
[tex]\[ b_1 = \frac{-20.0}{56.1} \approx -0.3565 \][/tex]

3. Calculate the intercept [tex]\( b_0 \)[/tex]:

[tex]\[ b_0 = \text{mean\_hours} - b_1 \cdot \text{mean\_size} \][/tex]

Using the calculated values:
[tex]\[ b_0 = 6.0 - (-0.3565 \cdot 6.7) \approx 8.389 \][/tex]

Therefore, the least squares linear regression line is:

[tex]\[ y = 8.389 - 0.357x \][/tex]

In conclusion:
- The slope [tex]\( b_1 \)[/tex] is approximately -0.357.
- The intercept [tex]\( b_0 \)[/tex] is approximately 8.389.