Answered

What is the area of a rhombus with diagonals that measure 7 inches and 5 inches?

A. [tex]35 \, \text{in}^2[/tex]
B. [tex]8.75 \, \text{in}^2[/tex]
C. [tex]12 \, \text{in}^2[/tex]
D. [tex]17.5 \, \text{in}^2[/tex]



Answer :

To determine the area of a rhombus when you know the lengths of its diagonals, you can use the following formula:

[tex]\[ \text{Area} = \frac{1}{2} \times \text{diagonal1} \times \text{diagonal2} \][/tex]

where [tex]\(\text{diagonal1}\)[/tex] and [tex]\(\text{diagonal2}\)[/tex] are the lengths of the diagonals.

Given:
- Diagonal 1 ([tex]\(\text{d}_1\)[/tex]) = 7 inches
- Diagonal 2 ([tex]\(\text{d}_2\)[/tex]) = 5 inches

Let's plug these values into the formula:

[tex]\[ \text{Area} = \frac{1}{2} \times \text{d}_1 \times \text{d}_2 \][/tex]

[tex]\[ \text{Area} = \frac{1}{2} \times 7 \times 5 \][/tex]

[tex]\[ \text{Area} = \frac{1}{2} \times 35 \][/tex]

[tex]\[ \text{Area} = 17.5 \][/tex]

Therefore, the area of the rhombus is:

[tex]\[ \text{Area} = 17.5 \, \text{in}^2 \][/tex]

So the correct answer is:
[tex]\[ 17.5 \, \text{in}^2 \][/tex]