Which equation describes the same line as [tex]$y - 5 = -2(x + 4)$[/tex]?

A. [tex]$y = -2x + 9$[/tex]

B. [tex][tex]$y = -2x - 2$[/tex][/tex]

C. [tex]$y = -2x - 3$[/tex]

D. [tex]$y = -2x - 8$[/tex]



Answer :

Sure, let's solve this step by step.

First, we need to convert the given equation [tex]\( y - 5 = -2(x + 4) \)[/tex] into the slope-intercept form, which is [tex]\( y = mx + b \)[/tex].

1. Start with the original equation:
[tex]\[ y - 5 = -2(x + 4) \][/tex]

2. Distribute the [tex]\(-2\)[/tex] on the right-hand side:
[tex]\[ y - 5 = -2x - 8 \][/tex]

3. Isolate [tex]\( y \)[/tex] by adding 5 to both sides:
[tex]\[ y = -2x - 8 + 5 \][/tex]

4. Simplify the equation:
[tex]\[ y = -2x - 3 \][/tex]

Now we have the equation in slope-intercept form [tex]\[ y = -2x - 3 \][/tex].

Next, we compare this with the given options:

- Option A: [tex]\( y = -2x + 9 \)[/tex]
- Option B: [tex]\( y = -2x - 2 \)[/tex]
- Option C: [tex]\( y = -2x - 3 \)[/tex]
- Option D: [tex]\( y = -2x - 8 \)[/tex]

From these options, we see that the equation [tex]\( y = -2x - 3 \)[/tex] matches Option C.

Therefore, the equation that describes the same line as [tex]\( y - 5 = -2(x + 4) \)[/tex] is [tex]\[ \boxed{y = -2x - 3} \][/tex].

Hence, the correct answer is Option C.