To determine the mass of the body, we can use Newton's Second Law of Motion, which is expressed by the formula:
[tex]\[ F = m \cdot a \][/tex]
Where:
- [tex]\( F \)[/tex] is the force applied to the body (in Newtons, N)
- [tex]\( m \)[/tex] is the mass of the body (in kilograms, kg)
- [tex]\( a \)[/tex] is the acceleration of the body (in meters per second squared, [tex]\( m/s^2 \)[/tex])
Given in the problem:
[tex]\[ F = 350 \, \text{N} \][/tex]
[tex]\[ a = 10 \, \text{m/s}^2 \][/tex]
We need to find the mass [tex]\( m \)[/tex]. Rearranging the formula to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Substitute the given values into the equation:
[tex]\[ m = \frac{350 \, \text{N}}{10 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 35 \, \text{kg} \][/tex]
Therefore, the mass of the body is:
[tex]\[ \boxed{35 \, \text{kg}} \][/tex]
So, the correct answer is:
[tex]\[ C. \, 35 \, \text{kg} \][/tex]