Given the following system of inequalities, identify the simplified forms of each inequality when solved for [tex]y[/tex].

1. [tex]11x - 5y \ \textless \ 30[/tex]
2. [tex]x - 5y \leq -20[/tex]

Identify the simplified inequality for [tex]\#2[/tex] when solved for [tex]y[/tex]:
[tex]y \geq \frac{x}{5} + 4[/tex]

Identify the simplified inequality for [tex]\#1[/tex] when solved for [tex]y[/tex]:
[tex]y \ \textgreater \ \frac{11x}{5} - 6[/tex]



Answer :

Sure, let's work through each inequality step by step to solve for [tex]\( y \)[/tex].

### Inequality #2: [tex]\( x - 5y \leq -20 \)[/tex]

1. Start with the inequality:
[tex]\[ x - 5y \leq -20 \][/tex]

2. Isolate the term involving [tex]\( y \)[/tex] by subtracting [tex]\( x \)[/tex] from both sides:
[tex]\[ -5y \leq -20 - x \][/tex]

3. To solve for [tex]\( y \)[/tex], divide both sides by [tex]\(-5\)[/tex]. Remember that when you divide or multiply by a negative number, the inequality sign flips:
[tex]\[ y \geq \frac{-20 - x}{-5} \][/tex]

4. Simplify the expression on the right-hand side:
[tex]\[ y \geq \frac{20 + x}{5} \][/tex]

So, the simplified form of Inequality #2 is:
[tex]\[ y \geq \frac{20 + x}{5} \][/tex]

### Inequality #1: [tex]\( 11x - 5y < 30 \)[/tex]

1. Start with the inequality:
[tex]\[ 11x - 5y < 30 \][/tex]

2. Isolate the term involving [tex]\( y \)[/tex] by subtracting [tex]\( 11x \)[/tex] from both sides:
[tex]\[ -5y < 30 - 11x \][/tex]

3. To solve for [tex]\( y \)[/tex], divide both sides by [tex]\(-5\)[/tex]. Remember that when you divide or multiply by a negative number, the inequality sign flips:
[tex]\[ y > \frac{30 - 11x}{-5} \][/tex]

4. Simplify the expression on the right-hand side:
[tex]\[ y > \frac{11x - 30}{5} \][/tex]

So, the simplified form of Inequality #1 is:
[tex]\[ y > \frac{11x - 30}{5} \][/tex]

### Summary:

- The simplified inequality for [tex]\( x - 5y \leq -20 \)[/tex] when solved for [tex]\( y \)[/tex] is:
[tex]\[ y \geq \frac{20 + x}{5} \][/tex]

- The simplified inequality for [tex]\( 11x - 5y < 30 \)[/tex] when solved for [tex]\( y \)[/tex] is:
[tex]\[ y > \frac{11x - 30}{5} \][/tex]