The figures below represent the sequence [tex]\(\{7, 11, 15, 19, \ldots\}\)[/tex] and is generated by the function [tex]\(f(n) = 4n + 3\)[/tex] where [tex]\(n\)[/tex] is the figure number and [tex]\(f(n)\)[/tex] is the sum of the blocks in the figure. Complete the table below to determine how many blocks are in the [tex]\(5^{\text{th}}\)[/tex] figure.
[tex]\[
\begin{tabular}{|c|c|c|c|c|c|}
\hline
$n$ & 1 & 2 & 3 & 4 & 5 \\
\hline
$f(n)$ & 7 & 11 & 15 & 19 & 23 \\
\hline
$(n, f(n))$ & (1, 7) & (2, 11) & (3, 15) & (4, 19) & (5, 23) \\
\hline
\end{tabular}
\][/tex]