Answer :

To find the limit

[tex]\[ \lim _{x \rightarrow a} \frac{x^{\frac{7}{3}} - a^{\frac{7}{3}}}{x^{\frac{1}{2}} - a^{\frac{1}{2}}}, \][/tex]

we approach the problem as follows:

### Step 1: Recognize the Indeterminate Form
When [tex]\( x = a \)[/tex], both the numerator and the denominator become zero, giving us an indeterminate form of [tex]\(\frac{0}{0}\)[/tex]. Therefore, we can apply L'Hôpital's Rule, which states that:

[tex]\[ \lim_{{x \to a}} \frac{f(x)}{g(x)} = \lim_{{x \to a}} \frac{f'(x)}{g'(x)} \][/tex]

provided the limit exists.

### Step 2: Identify [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]
Here, [tex]\( f(x) = x^{\frac{7}{3}} - a^{\frac{7}{3}} \)[/tex] and [tex]\( g(x) = x^{\frac{1}{2}} - a^{\frac{1}{2}} \)[/tex].

### Step 3: Differentiate [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]
First, find the derivative of [tex]\( f(x) \)[/tex]:

[tex]\[ f'(x) = \frac{d}{dx}\left( x^{\frac{7}{3}} - a^{\frac{7}{3}} \right) = \frac{7}{3} x^{\frac{4}{3}} \][/tex]

Second, find the derivative of [tex]\( g(x) \)[/tex]:

[tex]\[ g'(x) = \frac{d}{dx}\left( x^{\frac{1}{2}} - a^{\frac{1}{2}} \right) = \frac{1}{2} x^{-\frac{1}{2}} \][/tex]

### Step 4: Apply L'Hôpital's Rule
According to L'Hôpital's Rule:

[tex]\[ \lim_{{x \to a}} \frac{x^{\frac{7}{3}} - a^{\frac{7}{3}}}{x^{\frac{1}{2}} - a^{\frac{1}{2}}} = \lim_{{x \to a}} \frac{\frac{7}{3} x^{\frac{4}{3}}}{\frac{1}{2} x^{-\frac{1}{2}}} \][/tex]

### Step 5: Simplify the Expression
[tex]\[ \lim_{{x \to a}} \frac{\frac{7}{3} x^{\frac{4}{3}}}{\frac{1}{2} x^{-\frac{1}{2}}} = \lim_{{x \to a}} \frac{7 x^{\frac{4}{3} + \frac{1}{2}}}{3 \cdot \frac{1}{2}} = \lim_{{x \to a}} \frac{7 x^{\frac{4}{3} + \frac{1}{2}}}{\frac{3}{2}} \][/tex]

Combine the exponents:

[tex]\[ \frac{4}{3} + \frac{1}{2} = \frac{8}{6} + \frac{3}{6} = \frac{11}{6} \][/tex]

So the limit becomes:

[tex]\[ \lim_{{x \to a}} \frac{7 x^{\frac{11}{6}}}{\frac{3}{2}} = \lim_{{x \to a}} \frac{14 x^{\frac{11}{6}}}{3} \][/tex]

### Step 6: Evaluate the Limit
Since [tex]\( x \to a \)[/tex]:

[tex]\[ \frac{14 x^{\frac{11}{6}}}{3} \longrightarrow \frac{14 a^{\frac{11}{6}}}{3} \][/tex]

Thus, the limit is given by:

[tex]\[ \lim_{{x \to a}} \frac{x^{\frac{7}{3}} - a^{\frac{7}{3}}}{x^{\frac{1}{2}} - a^{\frac{1}{2}}} = \frac{14 a^{\frac{11}{6}}}{3} \][/tex]

This is the final answer.