Select the correct answer from the drop-down menu.

Find the maximum value of each function.
[tex]\[
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
x & -5 & -4 & -3 & -2 & 0 & 1 & 2 & 3 \\
\hline
f(x) & -7 & 0 & 5 & 8 & 8 & 5 & 0 & -7 \\
\hline
\end{tabular}
\][/tex]

The maximum value of [tex]$f(x)$[/tex] is [tex]$\square$[/tex] the maximum value of [tex]$g(x)$[/tex].



Answer :

To find the maximum value of the function [tex]\( f(x) \)[/tex] given the values in the table, we follow these steps:

1. Identify all the [tex]\(f(x)\)[/tex] values provided in the table.
2. Compare these values to determine the maximum.

From the table, the [tex]\(f(x)\)[/tex] values are:
[tex]\[ -7, 0, 5, 8, 8, 5, 0, -7 \][/tex]

Next, we look for the highest value among these:

- The value [tex]\(-7\)[/tex] appears at [tex]\(x = -5\)[/tex] and [tex]\(x = 3\)[/tex].
- The value [tex]\(0\)[/tex] appears at [tex]\(x = -4\)[/tex] and [tex]\(x = 2\)[/tex].
- The value [tex]\(5\)[/tex] appears at [tex]\(x = -3\)[/tex] and [tex]\(x = 1\)[/tex].
- The value [tex]\(8\)[/tex] appears at [tex]\(x = -2\)[/tex] and [tex]\(x = 0\)[/tex].

Comparing all these values, we see that the maximum value is:

[tex]\[ 8 \][/tex]

Therefore, the maximum value of [tex]\(f(x)\)[/tex] is:
[tex]\[ \boxed{8} \][/tex]

Now, assuming we need to compare this to another function [tex]\(g(x)\)[/tex], the problem asks us to complete the statement:

The maximum value of [tex]\(f(x)\)[/tex] is [tex]\(\square\)[/tex] the maximum value of [tex]\(g(x)\)[/tex].

Since we haven’t been provided with the values of [tex]\(g(x)\)[/tex], we can’t complete the comparative statement accurately. However, given the specific solution process described, it is reasonable to confidently say that:

“The maximum value of [tex]\( f(x) \)[/tex] is 8.”

To complete the drop-down statement for the given maximum:

```
The maximum value of [tex]\( f(x) \)[/tex] is equal to 8.
```
This matches the maximal findings within the provided [tex]\( f(x) \)[/tex] dataset.