Select the correct answer.

Consider functions [tex]$p$[/tex] and [tex]$q$[/tex].
[tex]$
\begin{array}{l}
p(x) = \log_2(x - 1) \\
q(x) = 2^x - 1
\end{array}
$[/tex]

Which statement is true about these functions?
A. The [tex]$x$[/tex]-intercept of function [tex]$p$[/tex] is less than the [tex]$x$[/tex]-intercept of function [tex]$q$[/tex].
B. The [tex]$x$[/tex]-intercept of function [tex]$p$[/tex] is the same as the [tex]$x$[/tex]-intercept of function [tex]$q$[/tex].
C. The [tex]$x$[/tex]-intercepts cannot be compared because either [tex]$p$[/tex] or [tex]$q$[/tex] does not have an [tex]$x$[/tex]-intercept.
D. The [tex]$x$[/tex]-intercept of function [tex]$p$[/tex] is greater than the [tex]$x$[/tex]-intercept of function [tex]$q$[/tex].



Answer :

To solve this problem step-by-step, we need to find the [tex]$x$[/tex]-intercepts of both functions [tex]\( p(x) \)[/tex] and [tex]\( Q(x) \)[/tex], and compare them.

### Step 1: Find the [tex]$x$[/tex]-intercept of function [tex]\( p(x) \)[/tex]

The [tex]$x$[/tex]-intercept of a function is the value of [tex]\( x \)[/tex] for which the function equals zero. For [tex]\( p(x) \)[/tex]:

[tex]\[ p(x) = \log_2(x-1) \][/tex]
Set [tex]\( p(x) = 0 \)[/tex]:
[tex]\[ \log_2(x-1) = 0 \][/tex]

To solve for [tex]\( x \)[/tex], exponentiate both sides using base 2:
[tex]\[ x - 1 = 2^0 \][/tex]
[tex]\[ x - 1 = 1 \][/tex]
[tex]\[ x = 2 \][/tex]

So, the [tex]$x$[/tex]-intercept of [tex]\( p(x) \)[/tex] is [tex]\( x = 2 \)[/tex].

### Step 2: Find the [tex]$x$[/tex]-intercept of function [tex]\( Q(x) \)[/tex]

Similarly, we find the [tex]$x$[/tex]-intercept for [tex]\( Q(x) \)[/tex] by setting the function equal to zero:
[tex]\[ Q(x) = 2^x - 1 \][/tex]
Set [tex]\( Q(x) = 0 \)[/tex]:
[tex]\[ 2^x - 1 = 0 \][/tex]

To solve for [tex]\( x \)[/tex]:
[tex]\[ 2^x = 1 \][/tex]

Since [tex]\( 2^0 = 1 \)[/tex]:
[tex]\[ x = 0 \][/tex]

So, the [tex]$x$[/tex]-intercept of [tex]\( Q(x) \)[/tex] is [tex]\( x = 0 \)[/tex].

### Step 3: Compare the [tex]$x$[/tex]-intercepts

We now compare the intercepts:
- [tex]\( x \)[/tex]-intercept of [tex]\( p(x) \)[/tex] is [tex]\( x = 2 \)[/tex]
- [tex]\( x \)[/tex]-intercept of [tex]\( Q(x) \)[/tex] is [tex]\( x = 0 \)[/tex]

Clearly, [tex]\( 2 \)[/tex] is greater than [tex]\( 0 \)[/tex].

### Conclusion

Thus, the [tex]$x$[/tex]-intercept of function [tex]\( p(x) \)[/tex] is greater than the [tex]$x$[/tex]-intercept of function [tex]\( Q(x) \)[/tex].

The correct answer is:
[tex]\[ \boxed{D} \][/tex]