Answer :
Let's tackle each part of the problem step-by-step in detail to understand the multiplication of the given fractions, ending up with the simplified result.
First part of the problem:
1. Given fractions:
[tex]\[ \frac{7}{9} \times \frac{8}{8} \][/tex]
2. Multiply the numerators:
[tex]\[ 7 \times 8 = 56 \][/tex]
3. Multiply the denominators:
[tex]\[ 9 \times 8 = 72 \][/tex]
4. The result of the multiplication:
[tex]\[ \frac{7}{9} \times \frac{8}{8} = \frac{56}{72} \][/tex]
Second part of the problem:
1. Given fractions:
[tex]\[ \frac{5}{8} \times \frac{9}{9} \][/tex]
2. Multiply the numerators:
[tex]\[ 5 \times 9 = 45 \][/tex]
3. Multiply the denominators:
[tex]\[ 8 \times 9 = 72 \][/tex]
4. The result of the multiplication:
[tex]\[ \frac{5}{8} \times \frac{9}{9} = \frac{45}{72} \][/tex]
Summarizing the results:
- The first fraction multiplication yields: [tex]\( \frac{56}{72} \)[/tex]
- The second fraction multiplication yields: [tex]\( \frac{45}{72} \)[/tex]
Using these calculations, we find that:
[tex]\[ \begin{array}{r} \frac{7}{9} \times \frac{8}{8} = \frac{56}{72} \\ \frac{5}{8} \times \frac{9}{9} = \frac{45}{72} \end{array} \][/tex]
Hence, the final numerical results are:
[tex]\[ \left(\frac{56}{72}, \frac{45}{72}\right) \][/tex]
First part of the problem:
1. Given fractions:
[tex]\[ \frac{7}{9} \times \frac{8}{8} \][/tex]
2. Multiply the numerators:
[tex]\[ 7 \times 8 = 56 \][/tex]
3. Multiply the denominators:
[tex]\[ 9 \times 8 = 72 \][/tex]
4. The result of the multiplication:
[tex]\[ \frac{7}{9} \times \frac{8}{8} = \frac{56}{72} \][/tex]
Second part of the problem:
1. Given fractions:
[tex]\[ \frac{5}{8} \times \frac{9}{9} \][/tex]
2. Multiply the numerators:
[tex]\[ 5 \times 9 = 45 \][/tex]
3. Multiply the denominators:
[tex]\[ 8 \times 9 = 72 \][/tex]
4. The result of the multiplication:
[tex]\[ \frac{5}{8} \times \frac{9}{9} = \frac{45}{72} \][/tex]
Summarizing the results:
- The first fraction multiplication yields: [tex]\( \frac{56}{72} \)[/tex]
- The second fraction multiplication yields: [tex]\( \frac{45}{72} \)[/tex]
Using these calculations, we find that:
[tex]\[ \begin{array}{r} \frac{7}{9} \times \frac{8}{8} = \frac{56}{72} \\ \frac{5}{8} \times \frac{9}{9} = \frac{45}{72} \end{array} \][/tex]
Hence, the final numerical results are:
[tex]\[ \left(\frac{56}{72}, \frac{45}{72}\right) \][/tex]