Certainly! Let's solve each part of the question step by step using the provided numerical values.
1. The first value is:
[tex]\[
389
\][/tex]
2. The second value is:
[tex]\[
7688
\][/tex]
3. The third value is:
[tex]\[
5706
\][/tex]
4. The fourth value is:
[tex]\[
55
\][/tex]
5. The fifth value is:
[tex]\[
1232
\][/tex]
Hence, the solution to the question, with each value carefully noted, is:
1. [tex]\( 389 \)[/tex]
2. [tex]\( 7688 \)[/tex]
3. [tex]\( 5706 \)[/tex]
4. [tex]\( 55 \)[/tex]
5. [tex]\( 1232 \)[/tex]
So, we have the following corresponding results:
1. [tex]\( 389 \)[/tex]
2. [tex]\( 7688 \)[/tex]
3. [tex]\( 5706 \)[/tex]
4. [tex]\( 55 \)[/tex]
5. [tex]\( 1232 \)[/tex]
These values are:
[tex]\[
(389, 7688, 5706, 55, 1232)
\][/tex]
Therefore, the detailed results for the given question are clearly:
- [tex]\( 389 \)[/tex]
- [tex]\( 7688 \)[/tex]
- [tex]\( 5706 \)[/tex]
- [tex]\( 55 \)[/tex]
- [tex]\( 1232 \)[/tex]
Thus, the final results are:
[tex]\[
(389, 7688, 5706, 55, 1232)
\][/tex]