\begin{tabular}{|c|c|c|}
\hline
Pressure (P) & Volume (V) & PV \\
\hline
1 atm & 8 L & \\
\hline
2 atm & 4 L & \\
\hline
4 atm & 2 L & \\
\hline
8 atm & 1 L & \\
\hline
\end{tabular}

1) Calculate [tex]\( P \times V \)[/tex].

2) What is the peculiarity in the value of PV?

3) Identify the gas law related to this.

4) Write down the mathematical expression that represents this gas law.

5) What will be the volume of this gas at 16 atm pressure?



Answer :

Let's go through each part of the question step-by-step:

### 1. Calculate [tex]\(P \times V\)[/tex]:
We are given pressures and volumes as follows:
- 1 atm and 8 L
- 2 atm and [tex]\(a\)[/tex] L (where [tex]\(a\)[/tex] is unknown)
- 4 atm and 2 L
- 8 atm and 1 L

We need to calculate the product [tex]\(P \times V\)[/tex] for each pair of [tex]\(P\)[/tex] and [tex]\(V\)[/tex].

- For the first pair: [tex]\(1 \text{ atm} \times 8 \text{ L} = 8 \text{ atm·L}\)[/tex]
- For the second pair: [tex]\(2 \text{ atm} \times a \text{ L} = 2a \text{ atm·L}\)[/tex]
- For the third pair: [tex]\(4 \text{ atm} \times 2 \text{ L} = 8 \text{ atm·L}\)[/tex]
- For the fourth pair: [tex]\(8 \text{ atm} \times 1 \text{ L} = 8 \text{ atm·L}\)[/tex]

Thus, the PV values for the known pressures and volumes are:
- [tex]\(8 \text{ atm·L}\)[/tex]
- [tex]\(2a \text{ atm·L}\)[/tex] (unknown value)
- [tex]\(8 \text{ atm·L}\)[/tex]
- [tex]\(8 \text{ atm·L}\)[/tex]

### 2. What is the peculiarity in the value of PV?
The peculiarity is that the product [tex]\(P \times V\)[/tex] remains constant for the known values:
- [tex]\(8 \text{ atm·L}\)[/tex]
- [tex]\(8 \text{ atm·L}\)[/tex]
- [tex]\(8 \text{ atm·L}\)[/tex]

This indicates that the product [tex]\(P \times V\)[/tex] does not change, which is a characteristic feature of a specific gas law.

### 3. Identify the gas law related to this:
The constancy of the product [tex]\(P \times V\)[/tex] is indicative of Boyle's Law. According to Boyle's Law, for a given amount of gas at constant temperature, the pressure and volume are inversely proportional to each other, meaning [tex]\(P \times V\)[/tex] remains constant.

### 4. Write down the mathematical expression that represents this gas law:
The mathematical expression for Boyle's Law is:
[tex]\[ P_1 \times V_1 = P_2 \times V_2 \][/tex]

### 5. What will be the volume of this gas at 16 atm pressure?
Given the initial pressure and volume:
[tex]\[ P_1 = 8 \text{ atm}, \; V_1 = 1 \text{ L}\][/tex]
And the new pressure:
[tex]\[ P_2 = 16 \text{ atm} \][/tex]

We use Boyle's Law to find the new volume [tex]\(V_2\)[/tex]:
[tex]\[ P_1 \times V_1 = P_2 \times V_2 \][/tex]
[tex]\[ 8 \text{ atm} \times 1 \text{ L} = 16 \text{ atm} \times V_2 \][/tex]
[tex]\[ V_2 = \frac{8 \text{ atm} \times 1 \text{ L}}{16 \text{ atm}} \][/tex]
[tex]\[ V_2 = \frac{8}{16} \text{ L} \][/tex]
[tex]\[ V_2 = 0.5 \text{ L} \][/tex]

Hence, the volume of the gas at 16 atm pressure will be [tex]\(0.5 \text{ L}\)[/tex].

In summary:
1. [tex]\(P \times V = 8 \text{ atm·L}\)[/tex], [tex]\(2a \text{ atm·L}\)[/tex], [tex]\(8 \text{ atm·L}\)[/tex], [tex]\(8 \text{ atm·L}\)[/tex]
2. The peculiarity is that [tex]\(P \times V\)[/tex] remains constant for the known values.
3. This is Boyle's Law.
4. The mathematical expression is [tex]\(P_1 \times V_1 = P_2 \times V_2\)[/tex].
5. The volume at 16 atm pressure is [tex]\(0.5 \text{ L}\)[/tex].