The expression is missing a closing parenthesis. Here is the corrected and formatted expression:

[tex]\[ (7 - [(-20 + 2) \div 6 - (+4)] - (10 - 4)) \div 23 \][/tex]



Answer :

Sure! Let's break down the expression step-by-step, and evaluate each component carefully.

The expression we need to evaluate is:

[tex]\[ 7 - \left[\frac{(-20 + 2)}{6} - (+4)\right] - \frac{(10 - 4)}{23} \][/tex]

Step 1: Start with the calculations inside the innermost parentheses.

[tex]\[ (-20 + 2) = -18 \][/tex]

Step 2: Next, divide [tex]\(-18\)[/tex] by [tex]\(6\)[/tex].

[tex]\[ \frac{-18}{6} = -3 \][/tex]

Step 3: Subtract [tex]\(+4\)[/tex] from [tex]\(-3\)[/tex].

[tex]\[ -3 - (+4) = -3 - 4 = -7 \][/tex]

So, the expression inside the brackets is:

[tex]\[ \left[\frac{(-20 + 2)}{6} - (+4)\right] = -7 \][/tex]

Step 4: Now, let’s rewrite the original expression with [tex]\(-7\)[/tex] substituted in place of the bracketed expression.

[tex]\[ 7 - (-7) - \frac{(10 - 4)}{23} \][/tex]

Step 5: Simplify the subtraction inside the remaining division.

[tex]\[ 10 - 4 = 6 \][/tex]

So, the expression simplifies to:

[tex]\[ 7 - (-7) - \frac{6}{23} \][/tex]

Step 6: Subtracting a negative number is the same as adding the positive counterpart.

[tex]\[ 7 - (-7) = 7 + 7 = 14 \][/tex]

So the expression is now:

[tex]\[ 14 - \frac{6}{23} \][/tex]

Step 7: Now, perform the division.

[tex]\[ \frac{6}{23} \approx 0.26086956521739130434782608695652 \][/tex]

Step 8: Finally, subtract this result from 14.

[tex]\[ 14 - \frac{6}{23} \approx 14 - 0.26086956521739130434782608695652 = 13.739130434782608695652173913043 \][/tex]

Thus, the fully evaluated expression is approximately:

[tex]\[ 13.73913043478261 \][/tex]

So, the result is:

[tex]\[ \boxed{13.73913043478261} \][/tex]