Answer :
To express the complex number [tex]\(\sin 120^\circ - i \cos 120^\circ\)[/tex] in polar form, we follow the steps below:
### Step 1: Determine the Cartesian Form of the Complex Number
Given the complex number:
[tex]\[ z = \sin 120^\circ - i \cos 120^\circ \][/tex]
First, we find the values for [tex]\(\sin 120^\circ\)[/tex] and [tex]\(\cos 120^\circ\)[/tex].
- [tex]\(\sin 120^\circ\)[/tex]:
[tex]\[ \sin 120^\circ = \frac{\sqrt{3}}{2} \approx 0.8660254037844387 \][/tex]
- [tex]\(\cos 120^\circ\)[/tex]:
[tex]\[ \cos 120^\circ = -\frac{1}{2} \approx -0.4999999999999998 \][/tex]
Substituting these values into the complex number:
[tex]\[ z = 0.8660254037844387 - i(-0.4999999999999998) \][/tex]
Simplifying, we get:
[tex]\[ z = 0.8660254037844387 + 0.4999999999999998i \][/tex]
### Step 2: Calculate the Magnitude [tex]\( r \)[/tex]
The magnitude [tex]\( r \)[/tex] of a complex number [tex]\( a + bi \)[/tex] is given by:
[tex]\[ r = \sqrt{a^2 + b^2} \][/tex]
For the complex number [tex]\( z = 0.8660254037844387 + 0.4999999999999998i \)[/tex]:
[tex]\[ r = \sqrt{(0.8660254037844387)^2 + (0.4999999999999998)^2} \][/tex]
Substituting the values:
[tex]\[ r = \sqrt{0.8660254037844387^2 + 0.4999999999999998^2} \][/tex]
[tex]\[ r = \sqrt{0.7499999999999998 + 0.25} = \sqrt{0.9999999999999998} \approx 1.0 \][/tex]
### Step 3: Calculate the Argument [tex]\( \theta \)[/tex]
The argument [tex]\( \theta \)[/tex] (or phase angle) of a complex number [tex]\( a + bi \)[/tex] is given by:
[tex]\[ \theta = \tan^{-1}\left(\frac{b}{a}\right) \][/tex]
Given [tex]\( a = 0.8660254037844387 \)[/tex] and [tex]\( b = 0.4999999999999998 \)[/tex]:
[tex]\[ \theta = \tan^{-1}\left(\frac{0.4999999999999998}{0.8660254037844387}\right) \][/tex]
[tex]\[ \theta = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \][/tex]
By calculating the above:
[tex]\[ \theta \approx 29.999999999999993^\circ \][/tex]
### Step 4: Express the Complex Number in Polar Form
The polar form of the complex number is written as:
[tex]\[ z = r(\cos \theta + i \sin \theta) \][/tex]
From the calculations:
[tex]\[ r = 1.0 \][/tex]
[tex]\[ \theta \approx 29.999999999999993^\circ \][/tex]
So, the polar form of the complex number [tex]\(\sin 120^\circ - i \cos 120^\circ\)[/tex] is:
[tex]\[ z = 1.0 \left(\cos 29.999999999999993^\circ + i \sin 29.999999999999993^\circ \right) \][/tex]
Therefore, the complex number [tex]\(\sin 120^\circ - i \cos 120^\circ\)[/tex] expressed in polar form is:
[tex]\[ 1.0 \angle 29.999999999999993^\circ \][/tex]
### Step 1: Determine the Cartesian Form of the Complex Number
Given the complex number:
[tex]\[ z = \sin 120^\circ - i \cos 120^\circ \][/tex]
First, we find the values for [tex]\(\sin 120^\circ\)[/tex] and [tex]\(\cos 120^\circ\)[/tex].
- [tex]\(\sin 120^\circ\)[/tex]:
[tex]\[ \sin 120^\circ = \frac{\sqrt{3}}{2} \approx 0.8660254037844387 \][/tex]
- [tex]\(\cos 120^\circ\)[/tex]:
[tex]\[ \cos 120^\circ = -\frac{1}{2} \approx -0.4999999999999998 \][/tex]
Substituting these values into the complex number:
[tex]\[ z = 0.8660254037844387 - i(-0.4999999999999998) \][/tex]
Simplifying, we get:
[tex]\[ z = 0.8660254037844387 + 0.4999999999999998i \][/tex]
### Step 2: Calculate the Magnitude [tex]\( r \)[/tex]
The magnitude [tex]\( r \)[/tex] of a complex number [tex]\( a + bi \)[/tex] is given by:
[tex]\[ r = \sqrt{a^2 + b^2} \][/tex]
For the complex number [tex]\( z = 0.8660254037844387 + 0.4999999999999998i \)[/tex]:
[tex]\[ r = \sqrt{(0.8660254037844387)^2 + (0.4999999999999998)^2} \][/tex]
Substituting the values:
[tex]\[ r = \sqrt{0.8660254037844387^2 + 0.4999999999999998^2} \][/tex]
[tex]\[ r = \sqrt{0.7499999999999998 + 0.25} = \sqrt{0.9999999999999998} \approx 1.0 \][/tex]
### Step 3: Calculate the Argument [tex]\( \theta \)[/tex]
The argument [tex]\( \theta \)[/tex] (or phase angle) of a complex number [tex]\( a + bi \)[/tex] is given by:
[tex]\[ \theta = \tan^{-1}\left(\frac{b}{a}\right) \][/tex]
Given [tex]\( a = 0.8660254037844387 \)[/tex] and [tex]\( b = 0.4999999999999998 \)[/tex]:
[tex]\[ \theta = \tan^{-1}\left(\frac{0.4999999999999998}{0.8660254037844387}\right) \][/tex]
[tex]\[ \theta = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \][/tex]
By calculating the above:
[tex]\[ \theta \approx 29.999999999999993^\circ \][/tex]
### Step 4: Express the Complex Number in Polar Form
The polar form of the complex number is written as:
[tex]\[ z = r(\cos \theta + i \sin \theta) \][/tex]
From the calculations:
[tex]\[ r = 1.0 \][/tex]
[tex]\[ \theta \approx 29.999999999999993^\circ \][/tex]
So, the polar form of the complex number [tex]\(\sin 120^\circ - i \cos 120^\circ\)[/tex] is:
[tex]\[ z = 1.0 \left(\cos 29.999999999999993^\circ + i \sin 29.999999999999993^\circ \right) \][/tex]
Therefore, the complex number [tex]\(\sin 120^\circ - i \cos 120^\circ\)[/tex] expressed in polar form is:
[tex]\[ 1.0 \angle 29.999999999999993^\circ \][/tex]