Complete the table for the given rule.

Rule: [tex] y = \frac{1}{4}x + 1 [/tex]

| x | y |
|:---:|:---:|
| 2 | 1.5 |
| 8 | 3 |
| 12 | 4 |



Answer :

To complete the table using the rule [tex]\( y = \frac{1}{4} x + 1 \)[/tex], we need to calculate the value of [tex]\( y \)[/tex] for each given [tex]\( x \)[/tex] value.

Step-by-step solution:

1. For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = \frac{1}{4} \cdot 2 + 1 \][/tex]
[tex]\[ y = \frac{2}{4} + 1 \][/tex]
[tex]\[ y = 0.5 + 1 \][/tex]
[tex]\[ y = 1.5 \][/tex]

2. For [tex]\( x = 8 \)[/tex]:
[tex]\[ y = \frac{1}{4} \cdot 8 + 1 \][/tex]
[tex]\[ y = 2 + 1 \][/tex]
[tex]\[ y = 3 \][/tex]

3. For [tex]\( x = 12 \)[/tex]:
[tex]\[ y = \frac{1}{4} \cdot 12 + 1 \][/tex]
[tex]\[ y = 3 + 1 \][/tex]
[tex]\[ y = 4 \][/tex]

Thus, the completed table is as follows:

[tex]\[ \begin{array}{c|c} x & y \\ \hline 2 & 1.5 \\ 8 & 3.0 \\ 12 & 4.0 \\ \end{array} \][/tex]

This table shows the corresponding [tex]\( y \)[/tex] values for the given [tex]\( x \)[/tex] values based on the rule [tex]\( y = \frac{1}{4} x + 1 \)[/tex].