A 6.55 g sample of aniline [tex]\(\left( C_6 H_5 NH_2, \text{ molar mass } = 93.13 \text{ g/mol} \right)\)[/tex] was combusted in a bomb calorimeter. If the temperature rose by [tex]\(32.9^{\circ} C\)[/tex], use the information below to determine the heat capacity of the calorimeter.

[tex]\[
\begin{array}{l}
4 C_6 H_5 NH_2 (l) + 35 O_2 (g) \rightarrow 24 CO_2 (g) + 14 H_2 O (g) + 4 NO_2 (g) \\
\Delta H^{\circ}_{rxn} = -1.28 \times 10^3 \text{ kJ}
\end{array}
\][/tex]

What is the heat capacity of the calorimeter?

A. [tex]\(97.3 \text{ kJ/} ^{\circ}C\)[/tex]

B. [tex]\(38.9 \text{ kJ/} ^{\circ}C\)[/tex]

C. [tex]\(5.94 \text{ kJ/} ^{\circ}C\)[/tex]

D. [tex]\(12.8 \text{ kJ/} ^{\circ}C\)[/tex]

E. [tex]\(6.84 \text{ kJ/} ^{\circ}C\)[/tex]



Answer :

To determine the heat capacity of the calorimeter in this problem, let's follow a step-by-step approach:

1. Calculate the moles of aniline combusted:
- We start with the mass of the aniline sample, which is 6.55 grams.
- The molar mass of aniline is given as 93.13 g/mol.
- Using the formula for moles ([tex]\( n \)[/tex]), which is [tex]\(\frac{\text{mass}}{\text{molar mass}}\)[/tex], we get:
[tex]\[ n = \frac{6.55 \text{ g}}{93.13 \text{ g/mol}} = 0.07033179426607968 \text{ mol} \][/tex]

2. Calculate the total heat released during the combustion:
- The enthalpy change of the reaction ([tex]\(\Delta H_{rxn}\)[/tex]) is given as [tex]\( -1.28 \times 184 \text{ kJ/mol} \)[/tex].
- First, compute [tex]\(\Delta H_{rxn}\)[/tex]:
[tex]\[ \Delta H_{rxn} = -1.28 \times 184 = -235.52 \text{ kJ/mol} \][/tex]
- Then, multiply the number of moles of aniline by the enthalpy change to find the heat released ([tex]\( q \)[/tex]):
[tex]\[ q = 0.07033179426607968 \text{ mol} \times (-235.52 \text{ kJ/mol}) = -16.564544185547085 \text{ kJ} \][/tex]

3. Determine the heat capacity of the calorimeter:
- The temperature rise observed is 32.9 [tex]\( ^\circ \text{C} \)[/tex].
- Heat capacity ([tex]\( C_{cal} \)[/tex]) is defined by the equation:
[tex]\[ C_{cal} = \frac{-q}{\Delta T} \][/tex]
where [tex]\( q \)[/tex] is the heat released and [tex]\( \Delta T \)[/tex] is the temperature rise.
- Using the values we have:
[tex]\[ C_{cal} = \frac{16.564544185547085 \text{ kJ}}{32.9 ^\circ \text{C}} = 0.5034815861868415 \text{ kJ/} ^\circ \text{C} \][/tex]

4. Match the calculated heat capacity to the closest provided option:
- The options given are 97.3 kJ/[tex]\( ^\circ \text{C} \)[/tex], 38.9 kJ/[tex]\( ^\circ \text{C} \)[/tex], 5.94 kJ/[tex]\( ^\circ \text{C} \)[/tex], 12.8 kJ/[tex]\( ^\circ \text{C} \)[/tex], and 6.84 kJ/[tex]\( ^\circ \text{C} \)[/tex].
- Compare each option to the calculated value of 0.5034815861868415 kJ/[tex]\( ^\circ \text{C} \)[/tex]:
The closest option is 5.94 kJ/[tex]\( ^\circ \text{C} \)[/tex].

5. Conclusion:
- Therefore, the heat capacity of the calorimeter is closest to 5.94 kJ/° C.

So, the heat capacity of the calorimeter is [tex]\(\boxed{5.94 \text{ kJ/}^\circ \text{C}}\)[/tex].