A piece of iron (mass [tex]$25.0 \, \text{g}$[/tex]) at 368 K is placed in a Styrofoam coffee cup containing 25.8 mL of water at 268 K. Assuming that no heat is lost to the cup or the surroundings, what will the final temperature of the water be?

The specific heat capacity of iron is [tex]$0.449 \, \text{J/g} \cdot \degree \text{C}$[/tex] and the specific heat capacity of water is [tex][tex]$4.18 \, \text{J/g} \cdot \degree \text{C}$[/tex][/tex].

A. 348 K
B. 308 K
C. 287 K
D. 325 K
E. 388 K



Answer :

Sure! Let's walk through the essential steps to solve this problem. The final goal is to find the final equilibrium temperature ([tex]\( T_f \)[/tex]) of the water when the iron and water reach thermal equilibrium.

### Step-by-Step Solution:

1. Convert Initial Temperatures from Kelvin to Celsius:

- For iron:
[tex]\[ T_{initial, iron} = 368 \, \text{K} - 273.15 = 94.85 \, ^{\circ}C \][/tex]

- For water:
[tex]\[ T_{initial, water} = 268 \, \text{K} - 273.15 = -5.15 \, ^{\circ}C \][/tex]

2. Calculate the Mass of Water:

Given the volume of water ([tex]\( V_{water} \)[/tex]) is 25.8 mL and the density ([tex]\( \rho_{water} \)[/tex]) is approximately 1.0 g/mL, the mass of water ([tex]\( m_{water} \)[/tex]) is:
[tex]\[ m_{water} = V_{water} \times \rho_{water} = 25.8 \, \text{mL} \times 1.0 \, \text{g/mL} = 25.8 \, \text{g} \][/tex]

3. Set Up the Energy Balance Equation:

According to the conservation of energy, the heat lost by iron ([tex]\( Q_{iron} \)[/tex]) will be equal to the heat gained by water ([tex]\( Q_{water} \)[/tex]):

[tex]\[ Q_{iron} = Q_{water} \][/tex]

The formula for heat ([tex]\( Q \)[/tex]) is:
[tex]\[ Q = m \times c \times \Delta T \][/tex]
where [tex]\( m \)[/tex] is the mass, [tex]\( c \)[/tex] is the specific heat capacity, and [tex]\( \Delta T \)[/tex] is the change in temperature.

For iron (losing heat):
[tex]\[ Q_{iron} = m_{iron} \times c_{iron} \times (T_{initial, iron} - T_f) \][/tex]

For water (gaining heat):
[tex]\[ Q_{water} = m_{water} \times c_{water} \times (T_f - T_{initial, water}) \][/tex]

Equating the two expressions:
[tex]\[ m_{iron} \times c_{iron} \times (T_{initial, iron} - T_f) = m_{water} \times c_{water} \times (T_f - T_{initial, water}) \][/tex]

4. Rearrange the Equation to Solve for [tex]\( T_f \)[/tex]:

Plugging in the given values:
[tex]\[ 25.0 \, \text{g} \times 0.449 \, \text{J/g}^{\circ}\text{C} \times (94.85 \, ^{\circ}\text{C} - T_f) = 25.8 \, \text{g} \times 4.18 \, \text{J/g}^{\circ}\text{C} \times (T_f - (-5.15 \, ^{\circ}\text{C})) \][/tex]

Simplify the equation:
[tex]\[ 25.0 \times 0.449 \times (94.85 - T_f) = 25.8 \times 4.18 \times (T_f + 5.15) \][/tex]

5. Calculate the Final Temperature [tex]\( T_f \)[/tex]:

Solving this equation numerically, we find:
[tex]\[ T_f \approx 4.28 \, ^{\circ}\text{C} \][/tex]

Convert this back to Kelvin:
[tex]\[ T_f = 4.28 \, ^{\circ}\text{C} + 273.15 = 277.43 \, \text{K} \][/tex]

### Final Answer:

So, the final temperature of the water and the iron when they reach thermal equilibrium will be approximately:

[tex]\[ 277 \, \text{K} \approx 277 \, \text{K} \][/tex]

Hence, the correct option is not precisely given in your options, but the closest value to the calculated result would be around [tex]\( 277 \, \text{K} \)[/tex].