Math

DATE:

Simplify the following fractions. Show your work.

1. [tex]\[ 1 \frac{10}{45} \div \frac{5}{5} = \frac{2}{9} \][/tex]

2. [tex]\[ \frac{316}{400} \div \cdots = - \][/tex]

3. [tex]\[ 2 \frac{12}{28} \div \frac{6}{14} = \frac{2}{2} \][/tex]

4. [tex]\[ 9 \frac{150}{500} \div - = - \][/tex]

5. [tex]\[ 3 \frac{18}{100} \div \frac{9}{50} = \frac{2}{2} \][/tex]

6. [tex]\[ 10 \frac{35}{75} \div - = - \][/tex]

7. [tex]\[ 4 \frac{2}{6} \div - = - \][/tex]

8. [tex]\[ 5 \frac{15}{45} \div \cdots = \square \][/tex]

9. [tex]\[ 6 \frac{21 \div}{81 \div} = \square \][/tex]

10. [tex]\[ 7 \frac{146}{254} \div \square = \square \][/tex]



Answer :

Let's simplify each of the given fractions step-by-step and solve the equation where possible:

### 1. Simplify and Divide:
#### Given:
[tex]\[ \frac{10}{45} \div \frac{5}{5} = \frac{2}{9} \][/tex]

#### Solution:
1. Simplify the fraction [tex]\( \frac{10}{45} \)[/tex].

[tex]\[ \frac{10}{45} = \frac{2}{9} \][/tex]

(by dividing the numerator and denominator by their greatest common divisor, which is 5).

2. Recognize that [tex]\( \frac{5}{5} = 1 \)[/tex].

3. Divide [tex]\( \frac{2}{9} \)[/tex] by 1.

[tex]\[ \frac{2}{9} \div 1 = \frac{2}{9} \][/tex]

So the solution confirms:
[tex]\[ \frac{2}{9} = \frac{2}{9} \][/tex]

### 2. This fraction can’t be solved with the given data:
[tex]\[ \frac{316}{400} \][/tex]

### 3. Simplify and Divide:
#### Given:
[tex]\[ \frac{12}{28} \div \frac{6}{14} = \frac{2}{2} \][/tex]

#### Solution:
1. Simplify the fraction [tex]\( \frac{12}{28} \)[/tex].

[tex]\[ \frac{12}{28} = \frac{3}{7} \][/tex]

(by dividing the numerator and denominator by their greatest common divisor, which is 4).

2. Simplify the fraction [tex]\( \frac{6}{14} \)[/tex].

[tex]\[ \frac{6}{14} = \frac{3}{7} \][/tex]

(by dividing the numerator and denominator by their greatest common divisor, which is 2).

3. Divide [tex]\( \frac{3}{7} \)[/tex] by [tex]\( \frac{3}{7} \)[/tex].

[tex]\[ \frac{3}{7} \div \frac{3}{7} = 1 \][/tex]

4. Recognize that [tex]\( \frac{2}{2} = 1 \)[/tex].

So the solution confirms:
[tex]\[ 1 = 1 \][/tex]

### 4. This fraction can’t be solved with the given data:
[tex]\[ \frac{150}{500} \][/tex]

### 5. Simplify and Divide:
#### Given:
[tex]\[ \frac{18}{100} \div \frac{9}{50} = \frac{2}{2} \][/tex]

#### Solution:
1. Simplify the fraction [tex]\( \frac{18}{100} \)[/tex].

[tex]\[ \frac{18}{100} = \frac{9}{50} \][/tex]

(by dividing the numerator and denominator by their greatest common divisor, which is 2).

2. Recognize that the simplified fraction [tex]\( \frac{18}{100} \)[/tex] is [tex]\( \frac{9}{50} \)[/tex].

3. Divide [tex]\( \frac{9}{50} \)[/tex] by [tex]\( \frac{9}{50} \)[/tex].

[tex]\[ \frac{9}{50} \div \frac{9}{50} = 1 \][/tex]

4. Recognize that [tex]\( \frac{2}{2} = 1 \)[/tex].

So the solution confirms:
[tex]\[ 1 = 1 \][/tex]

### 6. These fractions can’t be solved with the given data:
[tex]\[ \frac{35}{75} \][/tex]
[tex]\[ \frac{2}{6} \][/tex]
[tex]\[ \frac{15}{45} \][/tex]
[tex]\[ \frac{21}{81} \][/tex]
[tex]\[ \frac{146}{254} \][/tex]

Thus, we can only solve the specified parts which confirm the results:
[tex]\[ 1 \cdot \frac{10}{45} \div \frac{5}{5} = \frac{2}{9} \][/tex]
[tex]\[ 2 \cdot \frac{12}{28} \div \frac{6}{14} = \frac{2}{2} \][/tex]
[tex]\[ 3 \cdot \frac{18}{100} \div \frac{9}{50} = \frac{2}{2} \][/tex]

The followings are the correct and solved parts of the problem:
[tex]\[ \begin{aligned} &1. &&0.22 = 0.2222222222222222 \\ &2. &&1 = 1 \\ &3. &&1 = 1 \\ \end{aligned} \][/tex]