A company ships an average of 30,000 items each week. The approximate number of items shipped each minute is calculated using the conversion:

1. [tex]\(\frac{30,000 \text{ items}}{1 \text{ week}} \cdot \frac{7 \text{ days}}{1 \text{ week}} \cdot \frac{60 \text{ min}}{1 \text{ hr}} \cdot \frac{1 \text{ day}}{24 \text{ hrs}}\)[/tex]

2. [tex]\(\frac{30,000 \text{ items}}{1 \text{ week}} \cdot \frac{1 \text{ week}}{7 \text{ days}} \cdot \frac{1 \text{ day}}{24 \text{ hrs}} \cdot \frac{1 \text{ hr}}{60 \text{ min}}\)[/tex]

3. [tex]\(\frac{1 \text{ week}}{30,000 \text{ items}} \cdot \frac{1 \text{ week}}{7 \text{ days}} \cdot \frac{1 \text{ day}}{24 \text{ hrs}} \cdot \frac{1 \text{ hr}}{60 \text{ min}}\)[/tex]

4. [tex]\(\frac{1 \text{ week}}{30,000 \text{ items}} \cdot \frac{7 \text{ days}}{1 \text{ week}} \cdot \frac{24 \text{ hrs}}{1 \text{ day}} \cdot \frac{60 \text{ min}}{1 \text{ hr}}\)[/tex]



Answer :

To solve this problem, we need to find the number of items a company ships each minute given that they ship an average of 30,000 items each week.

We'll go through the conversion process step-by-step:

1. We start with the number of items shipped per week: [tex]\( \frac{30,000 \text{ items}}{1 \text{ week}} \)[/tex].

2. We need to convert weeks to days. There are 7 days in a week, so:
[tex]\[ \frac{30,000 \text{ items}}{1 \text{ week}} \cdot \frac{1 \text{ week}}{7 \text{ days}} = \frac{30,000 \text{ items}}{7 \text{ days}} \][/tex]

3. Next, we convert days to hours. There are 24 hours in a day, so:
[tex]\[ \frac{30,000 \text{ items}}{7 \text{ days}} \cdot \frac{1 \text{ day}}{24 \text{ hours}} = \frac{30,000 \text{ items}}{7 \times 24 \text{ hours}} \][/tex]

4. Then, we convert hours to minutes. There are 60 minutes in an hour, so:
[tex]\[ \frac{30,000 \text{ items}}{7 \times 24 \text{ hours}} \cdot \frac{1 \text{ hour}}{60 \text{ minutes}} = \frac{30,000 \text{ items}}{7 \times 24 \times 60 \text{ minutes}} \][/tex]

So, consolidating the steps, we have:
[tex]\[ \frac{30,000 \text{ items}}{1 \text{ week}} \cdot \frac{1 \text{ week}}{7 \text{ days}} \cdot \frac{1 \text{ day}}{24 \text{ hours}} \cdot \frac{1 \text{ hour}}{60 \text{ minutes}} = \frac{30,000 \text{ items}}{7 \times 24 \times 60 \text{ minutes}} \][/tex]

Given the numerical result from the calculation of the above expression is approximately 2.976190476190476.

Thus, the correct choice is:

(2) [tex]\[ \frac{30,000 \text{ items}}{1 \text{ week}} \cdot \frac{1 \text{ week}}{7 \text{ days}} \cdot \frac{1 \text{ day}}{24 \text{ hours}} \cdot \frac{1 \text{ hour}}{60 \text{ minutes}} \][/tex]

This conversion correctly calculates the number of items shipped per minute.