Answer :

To find the value of [tex]\(\cos 2x\)[/tex] given that [tex]\(\cos x = \frac{-2}{5}\)[/tex], we can use the double-angle formula for cosine.

The double-angle formula for cosine is given by:

[tex]\[ \cos 2x = 2\cos^2 x - 1 \][/tex]

Given:
[tex]\[ \cos x = \frac{-2}{5} \][/tex]

First, we need to find [tex]\(\cos^2 x\)[/tex]. This can be computed by squaring [tex]\(\cos x\)[/tex]:

[tex]\[ \cos^2 x = \left( \frac{-2}{5} \right)^2 = \frac{4}{25} \][/tex]

Next, we substitute [tex]\(\cos^2 x\)[/tex] into the double-angle formula:

[tex]\[ \cos 2x = 2\cos^2 x - 1 \][/tex]

Substituting [tex]\(\cos^2 x\)[/tex] value:

[tex]\[ \cos 2x = 2 \left( \frac{4}{25} \right) - 1 \][/tex]

Now, simplify the expression:

[tex]\[ \cos 2x = 2 \cdot \frac{4}{25} - 1 = \frac{8}{25} - 1 \][/tex]

Convert 1 to a fraction with the same denominator:

[tex]\[ 1 = \frac{25}{25} \][/tex]

Then subtract:

[tex]\[ \cos 2x = \frac{8}{25} - \frac{25}{25} = \frac{8 - 25}{25} = \frac{-17}{25} \][/tex]

Therefore, the value of [tex]\(\cos 2x\)[/tex] is:

[tex]\[ \cos 2x = \frac{-17}{25} \approx -0.68 \][/tex]