Divide and simplify the following expression:

[tex]\[ \frac{4c - 10}{c + 2} \div \frac{6c - 15}{4c + 8} \][/tex]

Simplify your answer as much as possible.

Answer: [tex]\(\square\)[/tex]



Answer :

To divide the given rational expressions, follow these steps:

1. Write the division as a multiplication by the reciprocal:
[tex]\[ \frac{4c - 10}{c + 2} \div \frac{6c - 15}{4c + 8} = \frac{4c - 10}{c + 2} \times \frac{4c + 8}{6c - 15} \][/tex]

2. Simplify each expression if possible:

- For the fraction [tex]\(\frac{4c - 10}{c + 2}\)[/tex]: Check if the numerator and denominator have common factors.
[tex]\[ 4c - 10 = 2(2c - 5) \][/tex]
Thus,
[tex]\[ \frac{4c - 10}{c + 2} = \frac{2(2c - 5)}{c + 2} \][/tex]

- For the fraction [tex]\(\frac{4c + 8}{6c - 15}\)[/tex]: Similarly, check for common factors in the numerator and denominator.
[tex]\[ 4c + 8 = 4(c + 2) \][/tex]
[tex]\[ 6c - 15 = 3(2c - 5) \][/tex]
Thus,
[tex]\[ \frac{4c + 8}{6c - 15} = \frac{4(c + 2)}{3(2c - 5)} \][/tex]

3. Rewrite the division problem using the simplified expressions and multiply:
[tex]\[ \frac{2(2c - 5)}{c + 2} \times \frac{4(c + 2)}{3(2c - 5)} \][/tex]

4. Perform the multiplication and cancel out any common factors:
- Note that [tex]\((2c - 5)\)[/tex] and [tex]\((c + 2)\)[/tex] appear in both the numerator and denominator.
[tex]\[ \frac{2(2c - 5) \times 4(c + 2)}{(c + 2) \times 3(2c - 5)} \][/tex]

- Cancel the common factors [tex]\((2c - 5)\)[/tex] and [tex]\((c + 2)\)[/tex]:

[tex]\[ \frac{2 \times 4 \times \cancel{(2c - 5)} \times \cancel{(c + 2)}}{\cancel{(c + 2)} \times 3 \times \cancel{(2c - 5)}} \][/tex]

- This leaves us with:
[tex]\[ \frac{8}{3} \][/tex]

So, the simplified answer is:
[tex]\[ \boxed{\frac{8}{3}} \][/tex]