Solve for [tex]\( x \)[/tex].

[tex]\[ 2x^2 = 72 \][/tex]

The solution is:
1. [tex]\(\{9, 4\}\)[/tex]
2. [tex]\(\{-4, 9\}\)[/tex]
3. [tex]\(\{6\}\)[/tex]
4. [tex]\(\{\pm 6\}\)[/tex]



Answer :

To solve the equation [tex]\( 2x^2 = 72 \)[/tex], follow these steps:

1. Divide both sides by 2 to simplify the equation:
[tex]\[ x^2 = \frac{72}{2} \][/tex]
[tex]\[ x^2 = 36 \][/tex]

2. Take the square root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \pm \sqrt{36} \][/tex]

3. Simplify the square root:
[tex]\[ \sqrt{36} = 6 \][/tex]
So, we get:
[tex]\[ x = \pm 6 \][/tex]

Therefore, the solutions to the equation [tex]\( 2x^2 = 72 \)[/tex] are [tex]\( x = 6 \)[/tex] and [tex]\( x = -6 \)[/tex], which can be written as [tex]\( \{ \pm 6 \} \)[/tex].

Hence, the correct answer is:
[tex]\[ (4) \{ \pm 6 \} \][/tex]