Enter the correct answer in the box.

Consider this expression:

[tex]\[ x^2 + x - 72 \][/tex]

Replace the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] to rewrite the given expression:

[tex]\[ (x + a)(x + b) \][/tex]



Answer :

To rewrite the given expression [tex]\( x^2 + x - 72 \)[/tex] in the form [tex]\( (x + a)(x + b) \)[/tex], follow these steps:

1. Start with the original quadratic expression:
[tex]\[ x^2 + x - 72 \][/tex]

2. We want to factor this quadratic expression into the form:
[tex]\[ (x + a)(x + b) \][/tex]

3. From the factors provided, it is known that:
[tex]\[ (x - 8)(x + 9) \][/tex]

Therefore, the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are [tex]\( -8 \)[/tex] and [tex]\( 9 \)[/tex], respectively.

Replace [tex]\( a \)[/tex] and [tex]\( b \)[/tex] in the factorized form:
[tex]\[ (x - 8)(x + 9) \][/tex]
So, the expression [tex]\( x^2 + x - 72 \)[/tex] is correctly written as:
[tex]\[ (x - 8)(x + 9) \][/tex]