Select the correct answer.

Which expression is equivalent to the given expression?

[tex](3y-4)(2y+7) + 11y - 9[/tex]

A. [tex]6y^2 + 24y - 37[/tex]
B. [tex]9y - 37[/tex]
C. [tex]6y^2 + 11y + 19[/tex]
D. [tex]16y - 6[/tex]



Answer :

To solve this problem, we need to simplify and combine the given algebraic expression [tex]\((3y - 4)(2y + 7) + 11y - 9\)[/tex]. We will follow these steps carefully:

1. Expand the product [tex]\((3y - 4)(2y + 7)\)[/tex].
- We use the distributive property (also known as FOIL for binomials) to expand:
[tex]\[ (3y - 4)(2y + 7) \][/tex]
- Multiply each term in the first binomial by each term in the second binomial:
[tex]\[ 3y \cdot 2y + 3y \cdot 7 + (-4) \cdot 2y + (-4) \cdot 7 \][/tex]
- Simplify the products:
[tex]\[ 6y^2 + 21y - 8y - 28 \][/tex]
- Combine like terms:
[tex]\[ 6y^2 + 13y - 28 \][/tex]

2. Add the remaining terms [tex]\(11y - 9\)[/tex] to the expanded expression:
- Combine the constants and the like terms involving [tex]\(y\)[/tex]:
[tex]\[ (6y^2 + 13y - 28) + 11y - 9 \][/tex]
- Group the like terms:
[tex]\[ 6y^2 + (13y + 11y) - 28 - 9 \][/tex]
- Combine the like terms:
[tex]\[ 6y^2 + 24y - 37 \][/tex]

Thus, the simplified expression is:
[tex]\[ 6y^2 + 24y - 37 \][/tex]

So, the correct option is:
[tex]\[ \text{A. } 6y^2 + 24y - 37 \][/tex]