a. [tex]\(\left(\frac{12}{5}\right) \div \left(-\frac{3}{10}\right) = \left(\frac{12}{5}\right) \left(-\frac{10}{3}\right) = \frac{(12) \times (-10)}{5 \times 3} = \frac{-120}{15} = -\frac{8}{1} = -8\)[/tex]

b. [tex]\(\left(-\frac{15}{8}\right) \div \left(-\frac{5}{4}\right) = \left(-\frac{15}{8}\right) \left(-\frac{4}{5}\right) = \frac{(-15) \times (-4)}{8 \times 5} = \frac{60}{40} = \frac{3}{2}\)[/tex]

3. Resuelva las siguientes operaciones.



Answer :

Let's resolve the given operations step-by-step.

### Part (a)

We are given the operation:

[tex]\[ \left(\frac{12}{5}\right) \div\left(-\frac{3}{10}\right) \][/tex]

To divide fractions, we multiply by the reciprocal of the divisor. Thus, we have:

[tex]\[ \left(\frac{12}{5}\right) \div \left(-\frac{3}{10}\right) = \left(\frac{12}{5}\right) \times \left(-\frac{10}{3}\right) \][/tex]

Now we perform the multiplication of fractions by multiplying the numerators together and the denominators together:

[tex]\[ \frac{12 \times -10}{5 \times 3} = \frac{-120}{15} \][/tex]

Next, we simplify the fraction by dividing the numerator and the denominator by their greatest common divisor, which is 15:

[tex]\[ \frac{-120 \div 15}{15 \div 15} = \frac{-8}{1} = -8 \][/tex]

Thus, the result of part (a) is:

[tex]\[ -8 \][/tex]

### Part (b)

We are given the operation:

[tex]\[ \left(-\frac{15}{8}\right) \div \left(-\frac{5}{4}\right) \][/tex]

To divide fractions, we multiply by the reciprocal of the divisor. Thus, we have:

[tex]\[ \left(-\frac{15}{8}\right) \div \left(-\frac{5}{4}\right) = \left(-\frac{15}{8}\right) \times \left(-\frac{4}{5}\right) \][/tex]

Now we perform the multiplication of fractions by multiplying the numerators together and the denominators together:

[tex]\[ \frac{(-15) \times (-4)}{8 \times 5} = \frac{60}{40} \][/tex]

Next, we simplify the fraction by dividing the numerator and the denominator by their greatest common divisor, which is 20:

[tex]\[ \frac{60 \div 20}{40 \div 20} = \frac{3}{2} \][/tex]

Thus, the result of part (b) is:

[tex]\[ \frac{3}{2} \quad \text{or} \quad 1.5 \][/tex]

### Final Results

- Part (a): [tex]\(-8\)[/tex]
- Part (b): [tex]\(\frac{3}{2}\)[/tex] or [tex]\(1.5\)[/tex]

These detailed steps provide the solutions to the given operations.