Answer :
Sure, let's solve the given problems step by step.
### Part a: [tex]\( 6 \longdiv { 744 } \)[/tex]
1. Set up the division:
- We need to divide [tex]\( 744 \)[/tex] by [tex]\( 6 \)[/tex].
2. Determine the quotient:
- When [tex]\( 744 \)[/tex] is divided by [tex]\( 6 \)[/tex], we need to find how many times [tex]\( 6 \)[/tex] fits into [tex]\( 744 \)[/tex] without exceeding it.
- The quotient is [tex]\( 124 \)[/tex].
3. Determine the remainder:
- After fitting [tex]\( 6 \)[/tex] into [tex]\( 744 \)[/tex] exactly [tex]\( 124 \)[/tex] times, we are left with no remainder.
- The remainder is [tex]\( 0 \)[/tex].
So, the result for part a is:
- Quotient: [tex]\( 124 \)[/tex]
- Remainder: [tex]\( 0 \)[/tex]
### Part b: [tex]\( 13 \longdiv { 598 } \)[/tex]
1. Set up the division:
- We need to divide [tex]\( 598 \)[/tex] by [tex]\( 13 \)[/tex].
2. Determine the quotient:
- When [tex]\( 598 \)[/tex] is divided by [tex]\( 13 \)[/tex], we need to find how many times [tex]\( 13 \)[/tex] fits into [tex]\( 598 \)[/tex] without exceeding it.
- The quotient is [tex]\( 46 \)[/tex].
3. Determine the remainder:
- After fitting [tex]\( 13 \)[/tex] into [tex]\( 598 \)[/tex] exactly [tex]\( 46 \)[/tex] times, we are left with no remainder.
- The remainder is [tex]\( 0 \)[/tex].
So, the result for part b is:
- Quotient: [tex]\( 46 \)[/tex]
- Remainder: [tex]\( 0 \)[/tex]
### Summary of the results:
- For [tex]\( 6 \longdiv { 744 }\)[/tex]:
- Quotient: [tex]\( 124 \)[/tex]
- Remainder: [tex]\( 0 \)[/tex]
- For [tex]\( 13 \longdiv { 598 }\)[/tex]:
- Quotient: [tex]\( 46 \)[/tex]
- Remainder: [tex]\( 0 \)[/tex]
These are the detailed solutions for both parts of the problem.
### Part a: [tex]\( 6 \longdiv { 744 } \)[/tex]
1. Set up the division:
- We need to divide [tex]\( 744 \)[/tex] by [tex]\( 6 \)[/tex].
2. Determine the quotient:
- When [tex]\( 744 \)[/tex] is divided by [tex]\( 6 \)[/tex], we need to find how many times [tex]\( 6 \)[/tex] fits into [tex]\( 744 \)[/tex] without exceeding it.
- The quotient is [tex]\( 124 \)[/tex].
3. Determine the remainder:
- After fitting [tex]\( 6 \)[/tex] into [tex]\( 744 \)[/tex] exactly [tex]\( 124 \)[/tex] times, we are left with no remainder.
- The remainder is [tex]\( 0 \)[/tex].
So, the result for part a is:
- Quotient: [tex]\( 124 \)[/tex]
- Remainder: [tex]\( 0 \)[/tex]
### Part b: [tex]\( 13 \longdiv { 598 } \)[/tex]
1. Set up the division:
- We need to divide [tex]\( 598 \)[/tex] by [tex]\( 13 \)[/tex].
2. Determine the quotient:
- When [tex]\( 598 \)[/tex] is divided by [tex]\( 13 \)[/tex], we need to find how many times [tex]\( 13 \)[/tex] fits into [tex]\( 598 \)[/tex] without exceeding it.
- The quotient is [tex]\( 46 \)[/tex].
3. Determine the remainder:
- After fitting [tex]\( 13 \)[/tex] into [tex]\( 598 \)[/tex] exactly [tex]\( 46 \)[/tex] times, we are left with no remainder.
- The remainder is [tex]\( 0 \)[/tex].
So, the result for part b is:
- Quotient: [tex]\( 46 \)[/tex]
- Remainder: [tex]\( 0 \)[/tex]
### Summary of the results:
- For [tex]\( 6 \longdiv { 744 }\)[/tex]:
- Quotient: [tex]\( 124 \)[/tex]
- Remainder: [tex]\( 0 \)[/tex]
- For [tex]\( 13 \longdiv { 598 }\)[/tex]:
- Quotient: [tex]\( 46 \)[/tex]
- Remainder: [tex]\( 0 \)[/tex]
These are the detailed solutions for both parts of the problem.