[tex]$\triangle ABC$[/tex] is reflected about the line [tex]$y = -x$[/tex] to give [tex]$\triangle A'B'C$[/tex] with vertices [tex]$A'(-1,1)$[/tex], [tex]$B'(-2,-1)$[/tex], [tex]$C(-1,0)$[/tex]. What are the vertices of [tex]$\triangle ABC$[/tex]?

A. [tex]$A(1,-1)$[/tex], [tex]$B(-1,-2)$[/tex], [tex]$C(0,-1)$[/tex]
B. [tex]$A(-1,1)$[/tex], [tex]$B(1,2)$[/tex], [tex]$C(0,1)$[/tex]
C. [tex]$A(-1,-1)$[/tex], [tex]$B(-2,-1)$[/tex], [tex]$C(-1,0)$[/tex]
D. [tex]$A(1,1)$[/tex], [tex]$B(2,-1)$[/tex], [tex]$C(1,0)$[/tex]
E. [tex]$A(1,2)$[/tex], [tex]$B(-1,1)$[/tex], [tex]$C(0,1)$[/tex]



Answer :

To determine the vertices of the original triangle [tex]\(\triangle ABC\)[/tex] before the reflection about the line [tex]\(y = -x\)[/tex], we need to understand the properties of reflections.

When a point [tex]\((x', y')\)[/tex] is reflected over the line [tex]\(y = -x\)[/tex], its coordinates transform into [tex]\((y', x')\)[/tex].

Given the vertices of [tex]\(\triangle A'B'C'\)[/tex] after reflection:
- [tex]\(A'(-1, 1)\)[/tex]
- [tex]\(B'(-2, -1)\)[/tex]
- [tex]\(C'(-1, 0)\)[/tex]

We can find the original vertices by reflecting these points back over the line [tex]\(y = -x\)[/tex]:

1. For [tex]\(A'(-1, 1)\)[/tex]:
- The original vertex [tex]\(A\)[/tex] will have coordinates [tex]\((y', x') = (1, -1)\)[/tex].
- Therefore, [tex]\(A(1, -1)\)[/tex].

2. For [tex]\(B'(-2, -1)\)[/tex]:
- The original vertex [tex]\(B\)[/tex] will have coordinates [tex]\((y', x') = (-1, -2)\)[/tex].
- Therefore, [tex]\(B(-1, -2)\)[/tex].

3. For [tex]\(C'(-1, 0)\)[/tex]:
- The original vertex [tex]\(C\)[/tex] will have coordinates [tex]\((y', x') = (0, -1)\)[/tex].
- Therefore, [tex]\(C(0, -1)\)[/tex].

Thus, the vertices of [tex]\(\triangle ABC\)[/tex] are:
- [tex]\(A(1, -1)\)[/tex]
- [tex]\(B(-1, -2)\)[/tex]
- [tex]\(C(0, -1)\)[/tex]

Comparing this with the given options, the correct answer is:

A. [tex]\(A(1,-1) ; B(-1,-2), C(0,-1)\)[/tex]