Answer :
To find a function that represents the volume of the chest, Ronald should multiply functions [tex]\( H(x) \)[/tex] and [tex]\( A(x) \)[/tex].
Let's break down the given functions:
[tex]\[ H(x) = x + 6 \][/tex]
[tex]\[ A(x) = \frac{20 \sqrt{x}}{3} \][/tex]
Now, to find the volume function [tex]\( V(x) \)[/tex], we need to multiply the height function [tex]\( H(x) \)[/tex] and the area function [tex]\( A(x) \)[/tex]:
[tex]\[ V(x) = H(x) \times A(x) = (x + 6) \times \frac{20 \sqrt{x}}{3} \][/tex]
Expand this product:
[tex]\[ V(x) = \left( x + 6 \right) \times \frac{20 \sqrt{x}}{3} \][/tex]
[tex]\[ V(x) = \frac{20 \sqrt{x}}{3} \times x + \frac{20 \sqrt{x}}{3} \times 6 \][/tex]
[tex]\[ V(x) = \frac{20 x \sqrt{x}}{3} + \frac{20 \cdot 6 \sqrt{x}}{3} \][/tex]
[tex]\[ V(x) = \frac{20 x \sqrt{x}}{3} + \frac{120 \sqrt{x}}{3} \][/tex]
[tex]\[ V(x) = \frac{20 x \sqrt{x}}{3} + 40 \sqrt{x} \][/tex]
Therefore, the function that represents the volume of the chest is:
[tex]\[ V(x) = \frac{20 x \sqrt{x}}{3} + 40 \sqrt{x} \][/tex]
Let's break down the given functions:
[tex]\[ H(x) = x + 6 \][/tex]
[tex]\[ A(x) = \frac{20 \sqrt{x}}{3} \][/tex]
Now, to find the volume function [tex]\( V(x) \)[/tex], we need to multiply the height function [tex]\( H(x) \)[/tex] and the area function [tex]\( A(x) \)[/tex]:
[tex]\[ V(x) = H(x) \times A(x) = (x + 6) \times \frac{20 \sqrt{x}}{3} \][/tex]
Expand this product:
[tex]\[ V(x) = \left( x + 6 \right) \times \frac{20 \sqrt{x}}{3} \][/tex]
[tex]\[ V(x) = \frac{20 \sqrt{x}}{3} \times x + \frac{20 \sqrt{x}}{3} \times 6 \][/tex]
[tex]\[ V(x) = \frac{20 x \sqrt{x}}{3} + \frac{20 \cdot 6 \sqrt{x}}{3} \][/tex]
[tex]\[ V(x) = \frac{20 x \sqrt{x}}{3} + \frac{120 \sqrt{x}}{3} \][/tex]
[tex]\[ V(x) = \frac{20 x \sqrt{x}}{3} + 40 \sqrt{x} \][/tex]
Therefore, the function that represents the volume of the chest is:
[tex]\[ V(x) = \frac{20 x \sqrt{x}}{3} + 40 \sqrt{x} \][/tex]