Solve the system of equations:

[tex]\[ 2x - 5y = -21 \][/tex]
[tex]\[ 3x + 5y = 6 \][/tex]

A. [tex]\((-3, 3)\)[/tex]
B. [tex]\((-27, 3)\)[/tex]
C. [tex]\(\left(0, \frac{21}{5}\right)\)[/tex]
D. No solution



Answer :

To solve the system of linear equations:

[tex]\[ \begin{cases} 2x - 5y = -21 \quad \text{(Equation 1)} \\ 3x + 5y = 6 \quad \text{(Equation 2)} \end{cases} \][/tex]

we need to find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy both equations simultaneously.

### Step 1: Write the equations
First, let's restate the given equations for clarity:
[tex]\[ 2x - 5y = -21 \][/tex]
[tex]\[ 3x + 5y = 6 \][/tex]

### Step 2: Add the equations
To eliminate one of the variables, we can add the two equations. Notice that the coefficients of [tex]\(y\)[/tex] are [tex]\(-5\)[/tex] and [tex]\(5\)[/tex], which will cancel each other out when added:

[tex]\[ (2x - 5y) + (3x + 5y) = -21 + 6 \][/tex]

Simplifying the left-hand side and right-hand side:

[tex]\[ (2x + 3x) + (-5y + 5y) = -21 + 6 \][/tex]

[tex]\[ 5x = -15 \][/tex]

### Step 3: Solve for [tex]\(x\)[/tex]
Now, solve for [tex]\(x\)[/tex] by dividing both sides by 5:

[tex]\[ x = \frac{-15}{5} \][/tex]

[tex]\[ x = -3 \][/tex]

### Step 4: Substitute [tex]\(x = -3\)[/tex] into one of the original equations
Next, we substitute [tex]\(x = -3\)[/tex] into one of the original equations to find [tex]\(y\)[/tex]. We’ll use Equation 1:

[tex]\[ 2(-3) - 5y = -21 \][/tex]

Simplify:

[tex]\[ -6 - 5y = -21 \][/tex]

### Step 5: Solve for [tex]\(y\)[/tex]
Add 6 to both sides to isolate the term with [tex]\(y\)[/tex]:

[tex]\[ -5y = -21 + 6 \][/tex]

[tex]\[ -5y = -15 \][/tex]

Divide both sides by -5:

[tex]\[ y = \frac{-15}{-5} \][/tex]

[tex]\[ y = 3 \][/tex]

### Step 6: Verify the solution
To confirm our solution, we substitute [tex]\(x = -3\)[/tex] and [tex]\(y = 3\)[/tex] into both original equations to ensure they hold true.

For Equation 1:

[tex]\[ 2(-3) - 5(3) = -21 \][/tex]

[tex]\[ -6 - 15 = -21 \][/tex]

[tex]\[ -21 = -21 \quad \text{(True)} \][/tex]

For Equation 2:

[tex]\[ 3(-3) + 5(3) = 6 \][/tex]

[tex]\[ -9 + 15 = 6 \][/tex]

[tex]\[ 6 = 6 \quad \text{(True)} \][/tex]

Both equations are satisfied, indicating that our solution [tex]\( (x, y) = (-3, 3) \)[/tex] is correct.

Thus, the answer is:

[tex]\[ \boxed{(-3, 3)} \][/tex]