Points [tex]\(A, B\)[/tex], and [tex]\(C\)[/tex] form a triangle. Complete the statements to prove that the sum of the interior angles of [tex]\(\triangle ABC\)[/tex] is [tex]\(180^{\circ}\)[/tex].

[tex]\[
\begin{array}{|l|l|}
\hline
\text{Statement} & \text{Reason} \\
\hline
\text{Points } A, B, \text{ and } C \text{ form a triangle} & \text{Given} \\
\hline
\text{Let } \overline{DE} \text{ be a line passing through } B \text{ and parallel to } \overline{AC} & \text{Definition of parallel lines} \\
\hline
\angle 3 \cong \angle 5 \text{ and } \angle 1 \cong \angle 4 & \text{Alternate interior angles are congruent} \\
\hline
m\angle 1 = m\angle 4 \text{ and } m\angle 3 = m\angle 5 & \text{Definition of congruent angles} \\
\hline
m\angle 4 + m\angle 2 + m\angle 5 = 180^{\circ} & \text{Angle addition and definition of a straight line} \\
\hline
m\angle 1 + m\angle 2 + m\angle 3 = 180^{\circ} & \text{Substitution} \\
\hline
\end{array}
\][/tex]



Answer :

Let's go through a step-by-step solution to prove that the sum of the interior angles of [tex]\( \triangle ABC \)[/tex] is [tex]\( 180^\circ \)[/tex].

1. Points [tex]\( A, B \)[/tex], and [tex]\( C \)[/tex] form a triangle
Reason: Given

2. Let [tex]\( \overline{DE} \)[/tex] be a line passing through [tex]\( B \)[/tex] and parallel to [tex]\( \overline{AC} \)[/tex]
Reason: Definition of parallel lines

3. [tex]\( \angle 3 \cong \angle 5 \)[/tex] and [tex]\( \angle 1 \cong \angle 4 \)[/tex]
Reason: Alternate Interior Angles Theorem (When a transversal intersects two parallel lines, alternate interior angles are congruent)

4. [tex]\( m\angle 1 = m\angle 4 \)[/tex] and [tex]\( m\angle 3 = m\angle 5 \)[/tex]
Reason: Congruent angles have equal measures

5. [tex]\( m\angle 4 + m\angle 2 + m\angle 5 = 180^\circ \)[/tex]
Reason: Angle addition and definition of a straight line (The sum of the angles on a straight line is [tex]\( 180^\circ \)[/tex])

6. [tex]\( m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ \)[/tex]
Reason: Substitution (Since [tex]\( m\angle 1 = m\angle 4 \)[/tex] and [tex]\( m\angle 3 = m\angle 5 \)[/tex], substitute these into the previous equation)

Thus, we have proven that the sum of the interior angles of [tex]\( \triangle ABC \)[/tex] is [tex]\( 180^\circ \)[/tex].