Answer :

Let's evaluate the given expression step-by-step:
[tex]\[ -2^2 - 5 \left[8 - \left(4 - 4^3\right)\right] \][/tex]

### Step 1: Evaluate the inner-most expression

First, we evaluate [tex]\(4^3\)[/tex]:
[tex]\[ 4^3 = 64 \][/tex]
Next, substitute [tex]\(64\)[/tex] back into the expression:
[tex]\[ 4 - 64 = -60 \][/tex]

### Step 2: Substitute back into the next-level expression

Substitute [tex]\(-60\)[/tex] back into the expression:
[tex]\[ 8 - (-60) \][/tex]
Calculate [tex]\(8 - (-60)\)[/tex]:
[tex]\[ 8 + 60 = 68 \][/tex]

### Step 3: Substitute back into the outer expression

Now substitute [tex]\(68\)[/tex] back into the remaining expression:
[tex]\[ -2^2 - 5 \times 68 \][/tex]

### Step 4: Evaluate the base exponent and the multiplication

Evaluate the exponent:
[tex]\[ -2^2 = (-2)^2 = 4 \][/tex]

Next, multiply:
[tex]\[ 5 \times 68 = 340 \][/tex]

### Step 5: Combine the results

Finally, subtract to get the result:
[tex]\[ 4 - 340 = -336 \][/tex]

Therefore, the expression evaluates to:
[tex]\[ -336 \][/tex]

So, the final answer is:
[tex]\[ -336 \][/tex]