To determine if the two ratios [tex]\( \frac{2}{3} \)[/tex] and [tex]\( \frac{4}{9} \)[/tex] are proportional, we need to compare them by converting them into decimal form:
1. Compute the first ratio:
[tex]\[
\frac{2}{3} \approx 0.6666666666666666
\][/tex]
2. Compute the second ratio:
[tex]\[
\frac{4}{9} \approx 0.4444444444444444
\][/tex]
3. Compare the two ratios:
[tex]\[
0.6666666666666666 \neq 0.4444444444444444
\][/tex]
Since [tex]\( 0.6666666666666666 \)[/tex] is not equal to [tex]\( 0.4444444444444444 \)[/tex], the two ratios [tex]\( \frac{2}{3} \)[/tex] and [tex]\( \frac{4}{9} \)[/tex] are not proportional.
Therefore, [tex]\(\frac{2}{3}\)[/tex] does not equal [tex]\(\frac{4}{9}\)[/tex], meaning the given proportions are not true.