11. Solve the compound inequality.

[tex]\[
4x \ \textgreater \ -16 \quad \text{or} \quad 6x \leq -48
\][/tex]

[tex]\[
x \ \textgreater \ -4 \quad \text{or} \quad x \leq -8
\][/tex]

A. [tex]\(-4 \ \textless \ x \geq -8\)[/tex]

B. [tex]\(-4 \ \textgreater \ x \geq -8\)[/tex]

C. [tex]\(x \ \textless \ -4 \quad \text{or} \quad x \leq -8\)[/tex]

D. [tex]\(x \ \textgreater \ -4 \quad \text{or} \quad x \leq -8\)[/tex]



Answer :

To solve the compound inequality, we'll address each inequality separately, then combine the results.

1. Let's solve the first inequality:
[tex]\[ 4x > -16 \][/tex]

We need to isolate [tex]\( x \)[/tex]. To do this, we divide both sides of the inequality by 4:
[tex]\[ \frac{4x}{4} > \frac{-16}{4} \implies x > -4 \][/tex]

2. Next, let's solve the second inequality:
[tex]\[ 6x \leq -48 \][/tex]

Again, we isolate [tex]\( x \)[/tex] by dividing both sides by 6:
[tex]\[ \frac{6x}{6} \leq \frac{-48}{6} \implies x \leq -8 \][/tex]

Now, we need to combine the results of the two inequalities. The compound inequality is:
[tex]\[ 4x > -16 \quad \text{or} \quad 6x \leq -48 \][/tex]

We have determined that:
[tex]\[ x > -4 \quad \text{or} \quad x \leq -8 \][/tex]

Combining these, we see the solution is in two parts:

- [tex]\( x > -4 \)[/tex]
- [tex]\( x \leq -8 \)[/tex]

So, the solution to the compound inequality is:
[tex]\[ x > -4 \quad \text{or} \quad x \leq -8 \][/tex]

In interval notation, the solution is:

[tex]\[ (-\infty, -8] \cup (-4, \infty) \][/tex]

This is because [tex]\( x \)[/tex] can be any value greater than [tex]\(-4\)[/tex] or any value less than or equal to [tex]\(-8\)[/tex].