Answer :

To find the value of [tex]\(\frac{x}{y}\)[/tex] given [tex]\(x = 3^m\)[/tex] and [tex]\(y = 3^{m+2}\)[/tex], we proceed with the following steps:

1. Substitute the expressions for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:

[tex]\[ x = 3^m \][/tex]
[tex]\[ y = 3^{m+2} \][/tex]

2. Set up the fraction [tex]\(\frac{x}{y}\)[/tex]:

[tex]\[ \frac{x}{y} = \frac{3^m}{3^{m+2}} \][/tex]

3. Apply the properties of exponents:

One of the properties of exponents is [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]. Using this property, we can simplify the fraction:

[tex]\[ \frac{3^m}{3^{m+2}} = 3^{m - (m+2)} \][/tex]

4. Simplify the exponent:

[tex]\[ 3^{m - (m+2)} = 3^{m - m - 2} = 3^{-2} \][/tex]

5. Rewrite the negative exponent as a positive exponent:

[tex]\[ 3^{-2} = \frac{1}{3^2} \][/tex]

6. Calculate the final numerical value:

[tex]\[ 3^2 = 9 \][/tex]

Therefore:

[tex]\[ \frac{1}{3^2} = \frac{1}{9} \][/tex]

Thus, the value of [tex]\(\frac{x}{y}\)[/tex] is:

[tex]\[ \frac{x}{y} = \frac{1}{9} \][/tex]