Type the correct answer in the box. Use numerals instead of words.

A toy is being constructed in the shape of a pyramid. The maximum amount of material to cover the sides and bottom of the pyramid is 250 square centimeters. The height of the toy is double the side length. What are the maximum dimensions to the nearest square centimeter for a square base and for a hexagonal base?

\begin{tabular}{|c|c|c|}
\hline
Shape of Base & Side Length & Height \\
\hline
square & [tex]$\square$[/tex] cm & [tex]$\square$[/tex] cm \\
\hline
regular hexagon & [tex]$\square$[/tex] cm & [tex]$\square$[/tex] cm \\
\hline
\end{tabular}



Answer :

To determine the maximum dimensions for the pyramid with a given surface area of 250 square centimeters, we need to account for both the area of the base and the lateral surface area. The height [tex]\( h \)[/tex] of the toy is double the side length [tex]\( a \)[/tex]. Let's solve the dimensions step-by-step for both a square base and a hexagonal base.

### 1. Square Base:

#### Step 1: Define Variables and Information
- Let [tex]\( a \)[/tex] be the side length of the square base.
- The height of the pyramid [tex]\( h \)[/tex] is given by [tex]\( h = 2a \)[/tex].

#### Step 2: Calculate the Surface Area
1. Base Area:
[tex]\[ A_{\text{base}} = a^2 \][/tex]

2. Lateral Surface Area:
- Each triangular face: The height of the triangular face from the base to the apex is calculated using the Pythagorean theorem.
[tex]\[ \text{Height of triangular face} = \sqrt{h^2 + \left(\frac{a}{2}\right)^2} = \sqrt{(2a)^2 + \left(\frac{a}{2}\right)^2} = \sqrt{4a^2 + \frac{a^2}{4}} = \sqrt{\frac{16a^2 + a^2}{4}} = \sqrt{\frac{17a^2}{4}} = \frac{\sqrt{17}a}{2} \][/tex]
- Area of one triangular face:
[tex]\[ A_{\text{triangle}} = \frac{1}{2} \times a \times \frac{\sqrt{17}a}{2} = \frac{\sqrt{17}a^2}{4} \][/tex]
- Total lateral surface area:
[tex]\[ A_{\text{lateral}} = 4 \times \frac{\sqrt{17}a^2}{4} = \sqrt{17}a^2 \][/tex]

3. Total Surface Area:
[tex]\[ A_{\text{total}} = A_{\text{base}} + A_{\text{lateral}} = a^2 + \sqrt{17}a^2 = a^2(1 + \sqrt{17}) \][/tex]

#### Step 3: Set Up the Equation and Solve for [tex]\( a \)[/tex]
The total surface area is given to be 250 cm²:
[tex]\[ a^2(1 + \sqrt{17}) = 250 \][/tex]

[tex]\[ a^2 = \frac{250}{1 + \sqrt{17}} \][/tex]

Calculating the above:
[tex]\[ a^2 \approx \frac{250}{1 + 4.123} \approx \frac{250}{5.123} \approx 48.8 \implies a \approx \sqrt{48.8} \approx 7 \text{ cm} \quad (\text{rounded}) \][/tex]

[tex]\[ h = 2a \approx 2 \times 7 = 14 \text{ cm} \][/tex]

### 2. Regular Hexagonal Base

#### Step 1: Define Variables and Information
- Let [tex]\( a \)[/tex] be the side length of each hexagon side.
- The height of the pyramid [tex]\( h \)[/tex] is [tex]\( h = 2a \)[/tex].

#### Step 2: Calculate the Surface Area
1. Base Area:
The area of the hexagonal base:
[tex]\[ A_{\text{base}} = \frac{3\sqrt{3}}{2} a^2 \][/tex]

2. Lateral Surface Area:
- Each triangular face:
The height of each triangle is the same as derived before:
[tex]\[ \text{Height of triangular face} = \sqrt{h^2 + \left(\frac{a}{2}\right)^2} = \sqrt{\frac{17a^2}{4}} = \frac{\sqrt{17}a}{2} \][/tex]
- Area of one triangular face:
[tex]\[ A_{\text{triangle}} = \frac{1}{2} \times a \times \frac{\sqrt{17}a}{2} = \frac{\sqrt{17}a^2}{4} \][/tex]
- Total lateral surface area:
[tex]\[ A_{\text{lateral}} = 6 \left(\frac{\sqrt{17}a^2}{4}\right) = \frac{6\sqrt{17}a^2}{4} = \frac{3\sqrt{17}a^2}{2} \][/tex]

3. Total Surface Area:
[tex]\[ A_{\text{total}} = A_{\text{base}} + A_{\text{lateral}} = \frac{3\sqrt{3}}{2}a^2 + \frac{3\sqrt{17}}{2}a^2 = \frac{3}{2}a^2(\sqrt{3} + \sqrt{17}) \][/tex]

#### Step 3: Set Up the Equation and Solve for [tex]\( a \)[/tex]
The total surface area is given to be 250 cm²:
[tex]\[ \frac{3}{2}a^2(\sqrt{3} + \sqrt{17}) = 250 \][/tex]

[tex]\[ a^2 = \frac{250 \times 2}{3(\sqrt{3} + \sqrt{17})} = \frac{500}{3(\sqrt{3} + \sqrt{17})} \][/tex]

Calculating the above:
[tex]\[ a^2 \approx \frac{500}{3(1.732 + 4.123)} = \frac{500}{3 \times 5.855} \approx \frac{500}{17.565} \approx 28.5 \implies a \approx \sqrt{28.5} \approx 5 \text{ cm} \quad (\text{rounded}) \][/tex]

[tex]\[ h = 2a \approx 2 \times 5 = 10 \text{ cm} \][/tex]

### Final Answer:
\begin{tabular}{|c|c|c|}
\hline
Shape of Base & Side Length & Height \\
\hline
square & [tex]\(7\)[/tex] & [tex]\(14\)[/tex] \\
\hline
regular hexagon & [tex]\(5\)[/tex] & [tex]\(10\)[/tex] \\
\hline
\end{tabular}