Select the correct answer.

For what value of [tex]$x$[/tex] is [tex]$\sin x = \cos 19^{\circ}$[/tex], where [tex][tex]$0^{\circ} \ \textless \ x \ \textless \ 90^{\circ}$[/tex][/tex]?

A. [tex]$38^{\circ}$[/tex]
B. [tex]$71^{\circ}$[/tex]
C. [tex][tex]$26^{\circ}$[/tex][/tex]
D. [tex]$19^{\circ}$[/tex]



Answer :

To determine the value of [tex]\( x \)[/tex] for which [tex]\(\sin x = \cos 19^{\circ}\)[/tex], where [tex]\(0^{\circ} < x < 90^{\circ}\)[/tex], we can use a fundamental trigonometric identity that relates the sine and cosine functions:

[tex]\[ \sin x = \cos(90^{\circ} - x) \][/tex]

Given [tex]\(\sin x = \cos 19^{\circ}\)[/tex], we can set up the equation based on the identity:

[tex]\[ \sin x = \cos 19^{\circ} \][/tex]

Using the above identity, we can write:

[tex]\[ \sin x = \cos(90^{\circ} - 71^{\circ}) \][/tex]

For the values to match, we recognize that:

[tex]\[ x = 90^{\circ} - 19^{\circ} \][/tex]

Calculating this:

[tex]\[ x = 71^{\circ} \][/tex]

Therefore, the correct answer is:

B. [tex]\(71^{\circ}\)[/tex]

Other Questions