Solve:
[tex]\[ -9x \ \textless \ 63 \][/tex]

A. [tex]\( x \leq -7 \)[/tex]
B. [tex]\( x \ \textless \ -7 \)[/tex]
C. [tex]\( x \ \textgreater \ -7 \)[/tex]
D. [tex]\( x \geq -7 \)[/tex]



Answer :

To solve the inequality [tex]\( -9x < 63 \)[/tex], let's follow a step-by-step process:

1. Start with the given inequality:
[tex]\[ -9x < 63 \][/tex]

2. Isolate [tex]\( x \)[/tex] by dividing both sides of the inequality by [tex]\(-9\)[/tex]:
When you divide both sides of an inequality by a negative number, the direction of the inequality changes.
[tex]\[ \frac{-9x}{-9} > \frac{63}{-9} \][/tex]

3. Simplify both sides:
[tex]\[ x > -7 \][/tex]

4. Interpret and choose the correct answer:
From the steps above, we have determined that [tex]\( x \)[/tex] must be greater than [tex]\(-7\)[/tex]. Among the given multiple-choice options, the correct answer is:
[tex]\[ x > -7 \][/tex]

Thus, the correct answer is:
[tex]\[ x > -7 \][/tex]